A063694 Remove odd-positioned bits from the binary expansion of n.
0, 1, 0, 1, 4, 5, 4, 5, 0, 1, 0, 1, 4, 5, 4, 5, 16, 17, 16, 17, 20, 21, 20, 21, 16, 17, 16, 17, 20, 21, 20, 21, 0, 1, 0, 1, 4, 5, 4, 5, 0, 1, 0, 1, 4, 5, 4, 5, 16, 17, 16, 17, 20, 21, 20, 21, 16, 17, 16, 17, 20, 21, 20, 21, 64, 65, 64, 65, 68, 69, 68, 69, 64, 65, 64, 65, 68, 69, 68
Offset: 0
Examples
a(25) = 17 because 25 = 11001 in binary and when we AND this with 10101 we are left with 10001 = 17.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
Programs
-
Haskell
a063694 0 = 0 a063694 n = 4 * a063694 n' + mod q 2 where (n', q) = divMod n 4 -- Reinhard Zumkeller, Sep 26 2015
-
Magma
function A063694(n) if n le 1 then return n; else return 4*A063694(Floor(n/4)) + ((n mod 4) mod 2); end if; return A063694; end function; [A063694(n): n in [0..120]]; // G. C. Greubel, Dec 05 2022
-
Maple
every_other_pos := proc(nn, x, w) local n, i, s; n := nn; i := 0; s := 0; while(n > 0) do if((i mod 2) = w) then s := s + ((x^i)*(n mod x)); fi; n := floor(n/x); i := i+1; od; RETURN(s); end: [seq(every_other_pos(j, 2, 0), j=0..120)];
-
Mathematica
a[n_] := BitAnd[n, Sum[2^k, {k, 0, Log[2, n] // Floor, 2}]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 28 2016 *) A063694[n_] := FromDigits[ReplaceAll[IntegerDigits[n, 4], {2 -> 0, 3 -> 1}], 4]; Array[A063694, 100, 0] (* Paolo Xausa, Feb 27 2025 *)
-
PARI
a(n)=sum(k=0,n,(-1)^k*2^k*floor(n/2^k)) /* since n> ceil(log(n)/log(2)) */
-
PARI
a(n)=if(n<0,0,sum(k=0,n,(-1)^k*2^k*floor(n/2^k))) /* since n> ceil(log(n)/log(2)) */
-
Python
def A063694(n): return n&((1<<(m:=n.bit_length())+(m&1))-1)//3 # Chai Wah Wu, Jan 30 2023
-
SageMath
def A063694(n): if (n<2): return n else: return 4*A063694(floor(n/4)) + ((n%4)%2) [A063694(n) for n in range(121)] # G. C. Greubel, Dec 05 2022
Formula
a(n) = Sum_{k>=0} (-1)^k*2^k*floor(n/2^k).
a(n) + A063695(n) = n.
a(n) = n - 2*a(floor(n/2)). - Vladeta Jovovic, Feb 23 2003
G.f.: 1/(1-x) * Sum_{k>=0} (-2)^k*x^2^k/(1-x^2^k). - Ralf Stephan, May 05 2003
a(n) = 4*a(floor(n/4)) + (n mod 4) mod 2. - Reinhard Zumkeller, Sep 26 2015
Comments