cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A048098 Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195
Offset: 1

Views

Author

Keywords

Comments

A006530(a(n))^2 <= a(n). - Reinhard Zumkeller, Oct 12 2011
This set (say S) has density d(S) = 1-log(2) and multiplicative density m(S) = 1-exp(-Gamma). Multiplicative density: let A be a set of numbers, A(x) = { k in A | gpf(k) <=x } where gpf(k) denotes the greatest prime factor of k and let m(x)(A) = Product_{p<=x} (1 - 1/p)*Sum_{k in A(x)} 1/k. If lim_{x->infinity} m(x)(A) exists = m(A), this limit is called "multiplicative density" of A (Erdős and Davenport, 1951). - Benoit Cloitre, Jun 12 2002

Crossrefs

Set union of A063539 and A001248.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Programs

  • Haskell
    a048098 n = a048098_list !! (n-1)
    a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x]
    -- Reinhard Zumkeller, Oct 12 2011
    
  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)
  • PARI
    print1(1, ", ");for(n=2, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))
    
  • Python
    from sympy import factorint
    def ok(n):
        return n == 1 if n < 2 else max(factorint(n))**2 <= n
    print([k for k in range(196) if ok(k)]) # Michael S. Branicky, Dec 22 2021
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A048098(n):
        def f(x): return int(n+sum(primepi(x//i)-primepi(i) for i in range(1,isqrt(x)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Sep 01 2024

Extensions

More terms from James Sellers, Apr 22 2000
Edited by Charles R Greathouse IV, Nov 08 2010

A101550 Lopsided (or biased) numbers: numbers n such that the largest prime factor of n is > 2*sqrt(n).

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 39, 41, 43, 46, 47, 51, 53, 57, 58, 59, 61, 62, 67, 68, 69, 71, 73, 74, 76, 79, 82, 83, 86, 87, 89, 92, 93, 94, 97, 101, 103, 106, 107, 109, 111, 113, 115, 116, 118, 122, 123, 124, 127, 129, 131, 134, 137, 139, 141
Offset: 1

Views

Author

T. D. Noe, Dec 06 2004

Keywords

Comments

Note that all primes > 3 are here. See A101549 for composite lopsided numbers.
First differs from A320048 at a(51). - (After R. J. Mathar), - Omar E. Pol, Oct 04 2018
The asymptotic density of this sequence is log(2) (Chowla and Todd, 1949). - Amiram Eldar, Jul 09 2020

Crossrefs

Cf. A002162, A063763 (composite n such that the largest prime factor > sqrt(n)), A064052 (n such that the largest prime factor > sqrt(n)).

Programs

  • Maple
    with(numtheory): a:=proc(n) if max((seq(factorset(n)[j],j=1..nops(factorset(n)))))^2>4*n then n else fi end: seq(a(n),n=2..170); # Emeric Deutsch, May 27 2007
  • Mathematica
    Select[Range[2, 200], FactorInteger[ # ][[ -1, 1]]>2Sqrt[ # ]&]

Extensions

Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar

A063762 Sqrt(n)-rough nonprimes: largest prime factor of n (A006530) >= sqrt(n).

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 20, 21, 22, 25, 26, 28, 33, 34, 35, 38, 39, 42, 44, 46, 49, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 129, 130, 133
Offset: 1

Views

Author

Robert G. Wilson v, Aug 14 2001

Keywords

Comments

A positive integer is called y-rough if all its prime factors are >= y.

References

  • D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms; see pp. 95-98.

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 2, 150 ], !PrimeQ[ # ] && FactorInteger[ # ] [ [ -1, 1 ] ] >= Sqrt[ # ] & ]
  • PARI
    { n=0; for (m=2, 10^9, f=vecmax(component(factor(m), 1)); if(!isprime(m) && f^2 >= m, write("b063762.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 30 2009
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A063762(n):
        def f(x): return int(n+(x if x<=3 else x-primepi(x//(y:=isqrt(x)))-sum(primepi(x//i)-primepi(i) for i in range(2,y))))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 05 2024

A090081 Cube root-smooth numbers: numbers k whose largest prime factor does not exceed the cube root of k.

Original entry on oeis.org

1, 8, 16, 27, 32, 36, 48, 54, 64, 72, 81, 96, 108, 125, 128, 135, 144, 150, 160, 162, 180, 192, 200, 216, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 343, 350, 360, 375, 378, 384, 392, 400, 405, 420, 432, 441, 448, 450, 480, 486, 490, 500, 504, 512, 525
Offset: 1

Views

Author

Labos Elemer, Nov 21 2003

Keywords

Comments

What is the asymptotic growth of this sequence?
Answer: a(n) ~ k*n, where k = 1/A175475. That is, about 4.8% of numbers are in this sequence. - Charles R Greathouse IV, Jul 14 2014

Examples

			378 = 2 * 3^3 * 7 is a term of the sequence since 7 < 7.23... = 378^(1/3).
		

Crossrefs

Programs

  • Maple
    filter:= n ->
    evalb(max(seq(f[1],f=ifactors(n)[2]))^3 <= n):
    select(filter, [$1..1000]); # Robert Israel, Jul 14 2014
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; lf[x_] := Length[FactorInteger[x]]; ma[x_] := Max[ba[x]]; Do[If[ !Greater[ma[n], gy=n^(1/3)//N]&&!PrimeQ[n], Print[n(*, {gy, ma[n]}*)]], {n, 1, 1000}]
    Select[Range[1000], (FactorInteger[#][[-1,1]])^3 <= # &] (* T. D. Noe, Sep 14 2011 *)
    Select[Range[1000],FactorInteger[#][[-1,1]]<=CubeRoot[#]&] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    is(n)=my(f=factor(n)[,1]);f[#f]^3<=n \\ Charles R Greathouse IV, Sep 14 2011
    
  • Python
    from sympy import primefactors
    def ok(n):
        if n==1 or max(primefactors(n))**3<=n: return True
        else: return False
    print([n for n in range(1, 1001) if ok(n)]) # Indranil Ghosh, Apr 23 2017

Formula

Solutions to A006530(n) <= n^(1/3).

A277624 Composite numbers which have a dominant prime factor. A prime factor p of n is dominant if floor(sqrt(p)) > (n/p).

Original entry on oeis.org

22, 26, 34, 38, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 116, 118, 122, 123, 124, 129, 134, 141, 142, 146, 148, 158, 159, 164, 166, 172, 177, 178, 183, 185, 188, 194, 201, 202, 205, 206, 212, 213, 214, 215, 218, 219, 226, 235, 236, 237, 244
Offset: 1

Views

Author

Peter Luschny, Oct 24 2016

Keywords

Comments

From David A. Corneth, Oct 26 2016 and Oct 27 2016: (Start)
Numbers of the form k * p where p > (k + 1)^2 and p prime and k > 1.
If n has a dominant prime factor, it's A006530(n).
All primes p > 4 have the property that floor(sqrt(A006530(p))) = floor(sqrt(p)) > (p/A006530(p)) = 1.
A063763 is a supersequence.
(End)

Examples

			133230 is in this sequence because 133230 = 2*3*5*4441 and 2*3*5 = 30 < 66 = floor(sqrt(4441)).
		

Crossrefs

Programs

  • Maple
    is_a := proc(n) max(numtheory:-factorset(n)):
    not isprime(n) and floor(sqrt(%)) > (n/%) end:
    select(is_a, [$1..244]);
  • Mathematica
    Select[Select[Range@ 244, CompositeQ], Function[n, Total@ Boole@ Map[Function[p, Floor@ Sqrt@ p > n/p], FactorInteger[n][[All, 1]]] > 0]] (* Michael De Vlieger, Oct 27 2016 *)
  • PARI
    upto(n) = my(l=List()); for(k=2, sqrtnint(n, 3), forprime(p=(k+1)^2, n\k, listput(l,k*p))); listsort(l); l
    is(n) = if(!isprime(n)&&n>1, f=factor(n)[, 1];sqrtint(f[#f]) > n/f[#f], 0) \\ David A. Corneth, Oct 26 2016
  • Python
    from sympy import primefactors
    from gmpy2 import is_prime, isqrt
    A277624_list = []
    for n in range(2,10**3):
        if not is_prime(n):
            for p in primefactors(n):
                if isqrt(p)*p > n:
                    A277624_list.append(n)
                    break # Chai Wah Wu, Oct 25 2016
    

Formula

Conjecture: A092487(a(n)) = A006530(a(n)). - David A. Corneth, Oct 27 2016

A101549 Composite lopsided numbers: composite numbers n such that the largest prime factor > 2 sqrt(n).

Original entry on oeis.org

22, 26, 34, 38, 39, 46, 51, 57, 58, 62, 68, 69, 74, 76, 82, 86, 87, 92, 93, 94, 106, 111, 115, 116, 118, 122, 123, 124, 129, 134, 141, 142, 145, 146, 148, 155, 158, 159, 164, 166, 172, 174, 177, 178, 183, 185, 186, 188, 194, 201, 202, 203, 205, 206, 212, 213
Offset: 1

Views

Author

T. D. Noe, Dec 06 2004

Keywords

Comments

All primes > 3 are also lopsided. See A101550 for all lopsided numbers.

Crossrefs

Cf. A063763 (composite n such that the largest prime factor > sqrt(n)), A064052 (n such that the largest prime factor > sqrt(n)).

Programs

  • Mathematica
    Select[Range[2, 300], !PrimeQ[ # ]&&FactorInteger[ # ][[ -1, 1]]>2Sqrt[ # ]&]

A374954 Positive integers k for which sqrt(k) < sqrt(p_1) + ... + sqrt(p_r), where p_1*...*p_r is the prime factorization of k.

Original entry on oeis.org

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 28, 32, 36, 40, 48, 64
Offset: 1

Views

Author

Felix Huber, Jul 29 2024

Keywords

Comments

This sequence is finite. Proof: First, let's assume that p_1 = ... = p_r = p, i.e. k = p^r. Then sqrt(p^r) < r*sqrt(p) or p < r^(2/(r-1)) respectively must apply. This inequality is satisfied for p = 2 and 2 <= r <= 6 as well as for p = 3 and r = 2. k can therefore contain at most r = 6 prime factors and is not a prime. By examining the individual ways for the highest value of k as a function of r, we find k = 2*2*2*2*2*2 = 64 for r = 6, k = 2*2*2*2*3 = 48 for r = 5, 2*2*2*5 = 40 for r = 4, 2*2*7 = 28 for r = 3 and 2*11 = 22 for r = 2. Therefore, this sequence is finite and its terms lie between 4 and 64.

Examples

			24 = 2*2*2*3 is in the sequence, because sqrt(24) < sqrt(2) + sqrt(2) + sqrt(2) + sqrt(3).
		

Crossrefs

Programs

  • Maple
    A374954:=proc(k)
       local i,r,s,L;
       if not isprime(k) then
          L:=ifactors(k)[2];
          r:=numelems(L);
          s:=0;
          for i to r do
             s:=s+sqrt(L[i,1])*L[i,2]
          od;
          s:=evalf(s^2);
          if kA374954(k),k=4..64);
Showing 1-7 of 7 results.