A064338
Row sums of signed triangle A064334.
Original entry on oeis.org
1, 2, 3, 3, 3, 4, -6, 49, -178, 76, 8633, -124131, 1202662, -8252662, 16009623, 730544913, -17236420029, 256679586178, -2787185606474, 15947981601793, 215110909342463, -9723413157539188, 216257810122284716, -3515999949642686709
Offset: 0
-
f:= proc(n) local k; 1 + add(simplify(hypergeom([1-n+k,n-k],[-n+k],-k)),k=0..n-1) end proc:
map(f, [$0..50]); # Robert Israel, Jan 03 2019
-
a[n_] := If[n == 0, 1, Sum[(n-k-j)*Binomial[n-k-1+j, j]* (-k)^j/(n-k), {k, 1, n-1}, {j, 0, n-k-1}] + 2];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 06 2023 *)
A064339
Row sums of unsigned triangle A064334.
Original entry on oeis.org
1, 2, 3, 3, 5, 12, 50, 289, 2032, 16384, 147817, 1471633, 16002504, 188441358, 2385787007, 32281229769, 464479506181, 7076959159858, 113762276632726, 1923164965554837, 34092037061635649, 632112131123669460
Offset: 0
A064062
Generalized Catalan numbers C(2; n).
Original entry on oeis.org
1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, example section 3.
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, arXiv:1211.3442 [math.CO] (2012) Theorem 6.1.
- N. Bonichon, C. Gavoille and N. Hanusse, Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding and Generation, In Proceedings of WG'03, volume 2880 of LNCS, pp. 81-92, 2003.
- Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
- Xiang-Ke Chang, X.-B. Hu, H. Lei and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
- Simone Fioravanti, Steve Hanneke, Shay Moran, Hilla Schefler, and Iska Tsubari, Ramsey Theorems for Trees and a General 'Private Learning Implies Online Learning' Theorem, arXiv:2407.07765 [cs.LG], 2024. See p. 44.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- N. J. A. Sloane, Transforms
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011-2012.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024
-
1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
-
a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *)
a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
-
{a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
-
def a(n):
if n==0: return 1
return hypergeometric([1-n, n], [-n], 2).simplify()
[a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
A064310
Generalized Catalan numbers C(-1; n).
Original entry on oeis.org
1, 1, 0, 1, -2, 6, -18, 57, -186, 622, -2120, 7338, -25724, 91144, -325878, 1174281, -4260282, 15548694, -57048048, 210295326, -778483932, 2892818244, -10786724388, 40347919626, -151355847012, 569274150156
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. [_N. J. A. Sloane_, Oct 08 2012]
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
- P. Pagacz and M. Wojtylak, On the spectral properties of a class of H-selfadjoint random matrices and the underlying combinatorics, arXiv:1310.2122 [math.PR], 2013.
-
[1] cat [(1 +(&+[(-2)^k*Binomial(2*k,k)/(k+1): k in [0..n-1]]))/2^n: n in [1..30]]; // G. C. Greubel, Feb 27 2019
-
a[n_]:= (1/2)^n*(1 + Sum[ CatalanNumber[k]*(-2)^k, {k, 0, n-1}]); Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 17 2013 *)
-
{a(n) = (1 + sum(k=0, n-1, (-2)^k*binomial(2*k,k)/(k+1)))/2^n};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 27 2019
-
from itertools import count, islice
def A064310_gen(): # generator of terms
yield from (1,1,0)
a, c = 0, 1
for n in count(1):
yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)*(1 if n&1 else -1)
A064310_list = list(islice(A064310_gen(),20)) # Chai Wah Wu, Apr 27 2023
-
[1] + [(1 +sum((-2)^k*catalan_number(k) for k in (0..n-1)))/2^n for n in (1..30)] # G. C. Greubel, Feb 27 2019
A064325
Generalized Catalan numbers C(-3; n).
Original entry on oeis.org
1, 1, -2, 13, -98, 826, -7448, 70309, -686090, 6865150, -70057772, 726325810, -7628741204, 81002393668, -868066319108, 9376806129493, -101988620430938, 1116026661667318, -12277755319108748, 135715825209716038, -1506587474535945788, 16789107646422189868, -187747069029477151328
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (7 +Sqrt(1+12*x))/(2*(4-x)) )); // G. C. Greubel, May 03 2019
-
a[0] = 1;
a[n_] := Sum[(n-m) Binomial[n+m-1, m] (-3)^m/n, {m, 0, n-1}];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 30 2018 *)
CoefficientList[Series[(7 +Sqrt[1+12*x])/(2*(4-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
-
a(n) = if (n==0, 1, sum(m=0, n-1, (n-m)*binomial(n-1+m, m)*(-3)^m/n)); \\ Michel Marcus, Jul 30 2018
-
my(x='x+O('x^30)); Vec((7 +sqrt(1+12*x))/(2*(4-x))) \\ G. C. Greubel, May 03 2019
-
def a(n):
if n == 0: return 1
return hypergeometric([1-n, n], [-n], -3).simplify()
[a(n) for n in range(24)] # Peter Luschny, Nov 30 2014
-
((7 +sqrt(1+12*x))/(2*(4-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
A064333
Generalized Catalan numbers C(-11; n).
Original entry on oeis.org
1, 1, -10, 221, -6082, 187386, -6184848, 213843477, -7645509706, 280351640702, -10485617230780, 398467433529298, -15341431926699284, 597149747213056324, -23459916801814723548, 929028306450848244741, -37045540042729366580442
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (23 +Sqrt(1+44*x))/(2*(12-x)) )); // G. C. Greubel, May 03 2019
-
CoefficientList[Series[(23 +Sqrt[1+44*x])/(2*(12-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
-
my(x='x+O('x^30)); Vec((23 +sqrt(1+44*x))/(2*(12-x))) \\ G. C. Greubel, May 03 2019
-
((23 +sqrt(1+44*x))/(2*(12-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
A064311
Generalized Catalan numbers C(-2; n).
Original entry on oeis.org
1, 1, -1, 5, -25, 141, -849, 5349, -34825, 232445, -1582081, 10938709, -76616249, 542472685, -3876400305, 27919883205, -202480492905, 1477306676445, -10836099051105, 79861379898165, -591082795606425
Offset: 0
-
a[n_] := If[n==0, 1, Sum[(n-m)*Binomial[n+m-1, m]*(-2)^m/n, {m,0,n-1}]];
Table[a[n], {n,0,20}] (* Jean-François Alcover, Jun 03 2019 *)
-
import mpmath
mp.dps = 25; mp.pretty = True
a = lambda n: mpmath.hyp2f1(1-n, n, -n, -2) if n>0 else 1
[int(a(n)) for n in range(21)] # Peter Luschny, Nov 30 2014
A064327
Generalized Catalan numbers C(-5; n).
Original entry on oeis.org
1, 1, -4, 41, -514, 7206, -108174, 1700721, -27646234, 460887086, -7836596944, 135380098426, -2369445113804, 41925242220616, -748729419265314, 13478117036893281, -244306305241572474, 4455242518055441046, -81683397232911983784, 1504758636166747742286
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (11 +Sqrt(1+20*x))/(2*(6-x)) )); // G. C. Greubel, May 03 2019
-
CoefficientList[Series[(11 +Sqrt[1+20*x])/(2*(6-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
-
my(x='x+O('x^30)); Vec((11 +sqrt(1+20*x))/(2*(6-x))) \\ G. C. Greubel, May 03 2019
-
def a(n):
if n==0: return 1
return hypergeometric([1-n, n], [-n], -5).simplify()
[a(n) for n in range(24)] # Peter Luschny, Nov 30 2014
-
((11 +sqrt(1+20*x))/(2*(6-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
A064329
Generalized Catalan numbers C(-7; n).
Original entry on oeis.org
1, 1, -6, 85, -1490, 29226, -614004, 13511709, -307448490, 7174776190, -170777485556, 4130050311234, -101192982385844, 2506610481299380, -62668163792277840, 1579300030107459885, -40076101342241993370
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (15 +Sqrt(1+28*x))/(2*(8-x)) )); // G. C. Greubel, May 03 2019
-
CoefficientList[Series[(15 +Sqrt[1+28*x])/(2*(8-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
-
my(x='x+O('x^30)); Vec((15 +sqrt(1+28*x))/(2*(8-x))) \\ G. C. Greubel, May 03 2019
-
((15 +sqrt(1+28*x))/(2*(8-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
A064331
Generalized Catalan numbers C(-9; n).
Original entry on oeis.org
1, 1, -8, 145, -3266, 82342, -2223818, 62912809, -1840413050, 55217088622, -1689752866904, 52538652432586, -1655036407913948, 52708355827445800, -1694246075896308110, 54894923324331676345, -1790984858946499478330
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (19 +Sqrt(1+36*x))/(2*(10-x)) )); // G. C. Greubel, May 03 2019
-
CoefficientList[Series[(19 +Sqrt[1+36*x])/(2*(10-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
-
my(x='x+O('x^30)); Vec((19 +sqrt(1+36*x))/(2*(10-x))) \\ G. C. Greubel, May 03 2019
-
((19 +sqrt(1+36*x))/(2*(10-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
Showing 1-10 of 14 results.
Comments