A039599
Triangle formed from even-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x).
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 42, 90, 75, 35, 9, 1, 132, 297, 275, 154, 54, 11, 1, 429, 1001, 1001, 637, 273, 77, 13, 1, 1430, 3432, 3640, 2548, 1260, 440, 104, 15, 1, 4862, 11934, 13260, 9996, 5508, 2244, 663, 135, 17, 1
Offset: 0
Triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9
0: 1
1: 1 1
2: 2 3 1
3: 5 9 5 1
4: 14 28 20 7 1
5: 42 90 75 35 9 1
6: 132 297 275 154 54 11 1
7: 429 1001 1001 637 273 77 13 1
8: 1430 3432 3640 2548 1260 440 104 15 1
9: 4862 11934 13260 9996 5508 2244 663 135 17 1
... Reformatted by _Wolfdieter Lang_, Dec 21 2015
From _Paul Barry_, Feb 17 2011: (Start)
Production matrix begins
1, 1,
1, 2, 1,
0, 1, 2, 1,
0, 0, 1, 2, 1,
0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 1, 2, 1,
0, 0, 0, 0, 0, 1, 2, 1 (End)
From _Wolfdieter Lang_, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^4 = 2*R(N,1) + 3*R(N,3) + 1*R(N, 5) =
2 + 3*S(2, rho(N)) + 1*S(4, rho(N)), identical in N >= 1. For N=4 (the square with only one distinct diagonal), the degree delta(4) = 2, hence R(4, 3) and R(4, 5) can be reduced, namely to R(4, 1) = 1 and R(4, 5) = -R(4,1) = -1, respectively. Therefore, rho(4)^4 =(2*cos(Pi/4))^4 = 2 + 3 -1 = 4. (End)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
- T. Myers and L. Shapiro, Some applications of the sequence 1, 5, 22, 93, 386, ... to Dyck paths and ordered trees, Congressus Numerant., 204 (2010), 93-104.
- T. D. Noe, Rows n=0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Quang T. Bach and Jeffrey B. Remmel, Generating functions for descents over permutations which avoid sets of consecutive patterns, arXiv:1510.04319 [math.CO], 2015 (see p.25).
- M. Barnabei, F. Bonetti and M. Silimbani, Two permutation classes enumerated by the central binomial coefficients, arXiv preprint arXiv:1301.1790 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.3.8
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010), Article 10.8.2, example 15.
- Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
- Paul Barry, Comparing two matrices of generalized moments defined by continued fraction expansions, arXiv preprint arXiv:1311.7161 [math.CO], 2013 and J. Int. Seq. 17 (2014) # 14.5.1.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Notes on the Hankel transform of linear combinations of consecutive pairs of Catalan numbers, arXiv:2011.10827 [math.CO], 2020.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 15, 29.
- Paul Barry, d-orthogonal polynomials, Fuss-Catalan matrices and lattice paths, arXiv:2505.16718 [math.CO], 2025. See p. 12.
- Jonathan E. Beagley and Paul Drube, Combinatorics of Tableau Inversions, Electron. J. Combin., 22 (2015), #P2.44.
- S. Chakravarty and Y. Kodama, A generating function for the N-soliton solutions of the Kadomtsev-Petviashvili II equation, arXiv preprint arXiv:0802.0524v2 [nlin.SI], 2008.
- Wun-Seng Chou, Tian-Xiao He, and Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, J. Int. Seqs., Vol. 21 (2018), #18.2.1.
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 11.
- Paul Drube, Generating Functions for Inverted Semistandard Young Tableaux and Generalized Ballot Numbers, arXiv:1606.04869 [math.CO], 2016.
- Paul Drube, Generalized Path Pairs and Fuss-Catalan Triangles, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8.
- T.-X. He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41, example p 32.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
- Thomas Koshy, Lobb's generalization of Catalan's parenthesization problem, The College Mathematics Journal 40 (2), March 2009, 99-107, DOI:10.1080/07468342.2009.11922344.
- Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 11.
- Andrew Lobb, Deriving the n-th Catalan number, Mathematical Gazette, Vol. 83, No. 496 (March 1999), 109-110.
- Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174. See page 161.
- Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016 (see 2.8).
- A. Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math 14 (1957), 405-414. [Annotated scan of selected pages]
- Athanasios Papoulis, A new method of inversion of the Laplace transform, Quart. Appl. Math., Vol. 14, No. 4 (1957), 405-414: 124. [Note: there is a typo]
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp. 29 (129) (1975) 215-222
- Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33
- Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
- Yidong Sun and Luping Ma, Minors of a class of Riordan arrays related to weighted partial Motzkin paths. Eur. J. Comb. 39, 157-169 (2014), Table 2.2.
- Wikipedia, Lobb number
- W.-J. Woan, L. Shapiro and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, 104 (1997), 926-931.
- Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017), 3081-3091.
-
/* As triangle */ [[Binomial(2*n, k+n)*(2*k+1)/(k+n+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 16 2015
-
T:=(n,k)->(2*k+1)*binomial(2*n,n-k)/(n+k+1): for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form # Emeric Deutsch, May 06 2006
T := proc(n, k) option remember; if k = n then 1 elif k > n then 0 elif k = 0 then T(n-1, 0) + T(n-1,1) else T(n-1, k-1) + 2*T(n-1, k) + T(n-1, k+1) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..9) od; # Peter Luschny, Feb 14 2023
-
Table[Abs[Differences[Table[Binomial[2 n, n + i], {i, 0, n + 1}]]], {n, 0,7}] // Flatten (* Geoffrey Critzer, Dec 18 2011 *)
Join[{1},Flatten[Table[Binomial[2n-1,n-k]-Binomial[2n-1,n-k-2],{n,10},{k,0,n}]]] (* Harvey P. Dale, Dec 18 2011 *)
Flatten[Table[Binomial[2*n,m+n]*(2*m+1)/(m+n+1),{n,0,9},{m,0,n}]] (* Jayanta Basu, Apr 30 2013 *)
-
a(n, k) = (2*n+1)/(n+k+1)*binomial(2*k, n+k)
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(a(y, x), ", ")); print(""))
trianglerows(10) \\ Felix Fröhlich, Jun 24 2016
-
# Algorithm of L. Seidel (1877)
# Prints the first n rows of the triangle
def A039599_triangle(n) :
D = [0]*(n+2); D[1] = 1
b = True ; h = 1
for i in range(2*n-1) :
if b :
for k in range(h,0,-1) : D[k] += D[k-1]
h += 1
else :
for k in range(1,h, 1) : D[k] += D[k+1]
if b : print([D[z] for z in (1..h-1)])
b = not b
A039599_triangle(10) # Peter Luschny, May 01 2012
A000957
Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.
Original entry on oeis.org
0, 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252, 30711521221376
Offset: 0
G.f. = x + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 57*x^7 + 186*x^8 + 622*x^9 + 2120*x^10 + ...
- Emeric Deutsch and Louis W. Shapiro, Seventeen Catalan identities, Bull. Instit. Combin. Applic., Vol. 31 (2001), pp. 31-38.
- Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013). - N. J. A. Sloane, Jun 05 2012
- Louis W. Shapiro and Carol J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..1670 (first 201 terms from T. D. Noe)
- Francesca Aicardi, Fuss-Catalan Triangles, arXiv:2310.07317 [math.CO], 2023.
- Martin Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb., Vol. 12 (2005), R31.
- Elena Barcucci, Elisa Pergola, Renzo Pinzani and Simone Rinaldi, ECO method and hill-free generalized Motzkin paths, Séminaire Lotharingien de Combinatoire, 46 (2001).
- Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, Vol. 18 (2011), #P178.
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 4.
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
- Paul Barry, The Triple Riordan Group, arXiv:2412.05461 [math.CO], 2024. See pp. 6, 10.
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021.
- Rachael Boyd and Richard Hepworth, Combinatorics of injective words for Temperley-Lieb algebras, arXiv:2006.04261 [math.AT], 2020.
- Naiomi Tuere Cameron, Random walks, trees and extensions of Riordan group techniques, Dissertation, Howard University, 2002.
- Naiomi T. Cameron and Jillian E. McLeod, Returns and Hills on Generalized Dyck Paths, Journal of Integer Sequences, Vol. 19 (2016), #16.6.1.
- Peter J. Cameron, Some sequences of integers, Discrete Math., Vol. 75, No. 1-3 (1989), pp. 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., Vol. 43 (1989), pp. 89-102.
- Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
- Ari Cruz, Pamela E. Harris, Kimberly J. Harry, Jan Kretschmann, Matt McClinton, Alex Moon, John O. Museus, and Eric Redmon, On some discrete statistics of parking functions, arXiv:2312.16786 [math.CO], 2023. See p. 13.
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8.
- Dennis E. Davenport, Louis W. Shapiro and Leon C. Woodson, A bijection between the triangulations of convex polygons and ordered trees, Integers, Vol. 20 (2020), Article #A8.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Emeric Deutsch and Louis W. Shapiro, A survey of the Fine numbers, Discrete Math., Vol. 241 (2001), pp. 241-265.
- Filippo Disanto, Andrea Frosini and Simone Rinaldi and Renzo Pinzani, The Combinatorics of Convex Permutominoes, Southeast Asian Bulletin of Mathematics, Vol. 32 (2008), pp. 883-912.
- R. R. X. Du, J. He, and X. Yun, Counting vertices in plane and k-ary trees with given outdegree, arXiv preprint arXiv:1501.07468 [math.CO], 2015.
- Shalosh B. Ekhad, Mingjia Yang and Doron Zeilberger, Automated proofs of many conjectured recurrences in the OEIS made by R. J. Mathar, arXiv:1707.04654 [math.HO], 2017.
- Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832; http://dx.doi.org/10.4134/CKMS.2013.28.4.827.
- Terrence Fine, Extrapolation when very little is known about the source, Information and Control, Vol. 16 (1970), pp. 331-359.
- Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
- Ignas Gasparavičius, Andrius Grigutis, and Juozas Petkelis, Picturesque convolution-like recurrences and partial sums' generation, arXiv:2507.23619 [math.NT], 2025. See p. 27.
- Taras Goy and Mark Shattuck, Hessenberg-Toeplitz Matrix Determinants with Schröder and Fine Number Entries, arXiv:2303.10223 [math.CO], 2023.
- Taras Goy and Mark Shattuck, Hessenberg-Toeplitz Matrix Determinants with Schröder and Fine Number Entries, Carpathian Math. Publ. 15 (2023), No. 2, 420-436.
- Candice Jean-Louis and Asamoah Nkwanta, Some algebraic structure of the Riordan group, Linear Algebra and its Applications, Vol. 438, No. 5 (2013), pp. 2018-2035. - _N. J. A. Sloane_, Jan 03 2013
- Sergey Kitaev, Anna de Mier, Marc Noy, On the number of self-dual rooted maps, European J. Combin., Vol. 35 (2014), pp. 377-387. MR3090510. See page 827.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012. - From _N. J. A. Sloane_, May 09 2012
- Sergey Kitaev, Jeffrey Remmel, and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Volume 15 #A16. (arXiv:1302.2274)
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, Vol. 4 (2001), Article 01.1.5.
- Toufik Mansour and Mark Shattuck, Chebyshev Polynomials and Statistics on a New Collection of Words in the Catalan Family, arXiv:1407.3516 [math.CO], 2014.
- Peter McCalla and Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
- Asamoah Nkwanta and Akalu Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, Vol. 16 (2013), Article 13.9.5.
- Paul Peart and Wen-Jin Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), Article 00.2.1.
- Paul Peart and Wen-Jin Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences, Vol. 4 (2001), Article 01.1.3.
- Aaron Robertson, Dan Saracino and Doron Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- D. G. Rogers, Similarity relations on finite ordered sets, J. Combin. Theory, Series A, Vol. 23, No. 1 (1977), pp. 88-98. Erratum, loc. cit., Vol. 25 (1978), pp. 95-96.
- Louis W. Shapiro and Carol J. Wang, A bijection between 3-Motzkin paths and Schroder paths with no peak at odd height, JIS, Vol. 12 (2009), Article 09.3.2.
- Volker Strehl, A note on similarity relations, Discr. Math., Vol. 19, No. 1 (1977), pp. 99-102.
- Hua Sun and Yi Wang, A Combinatorial Proof of the Log-Convexity of Catalan-Like Numbers, J. Int. Seq., Vol. 17 (2014), Article 14.5.2
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, M.Sc. Thesis, Reykjavik Univ., May 2016.
- Index entries for sequences related to rooted trees
-
a000957 n = a000957_list !! n
a000957_list = 0 : 1 :
(map (`div` 2) $ tail $ zipWith (-) a000108_list a000957_list)
-- Reinhard Zumkeller, Nov 12 2011
-
[0,1] cat [n le 1 select n-1 else (Catalan(n)-Self(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Nov 17 2016
-
t1 := (1-sqrt(1-4*x))/(3-sqrt(1-4*x)); t2 := series(t1,x,90); A000957 := n- coeff(t2,x,n);
A000957 := proc(n): if n = 0 then 0 else add((-1)^(n+k-1)*binomial(n+k-1, n-1)*(n-k)/n, k=0..n-1) fi: end: seq(A000957(n), n=0..28); # Johannes W. Meijer, Jul 22 2013
# third Maple program:
a:= proc(n) option remember; `if`(n<3, n*(2-n),
((7*n-12)*a(n-1)+(4*n-6)*a(n-2))/(2*n))
end:
seq(a(n), n=0..32); # Alois P. Heinz, Apr 23 2020
-
Table[ Plus@@Table[ (-1)^(m+n) (n+m)!/n!/m! (n-m+1)/(n+1), {m, 0, n} ], {n, 0, 36} ] (* Wouter Meeussen *)
a[0] = 0; a[n_] := (1/2)*(-3*(-1/2)^n + 2^(n+1)*(2n-1)!!* Hypergeometric2F1Regularized[2, 2n+1, n+2, -1]); (* Jean-François Alcover, Feb 22 2012 *)
Table[2^n (n-2) (2n-1)!! (3 (n-1) Hypergeometric2F1[1, 3-n, 3+n, 2] - n - 2)/(n+2)! + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
-
C(n):=binomial(2*n,n)/(n+1);
a(n):=if n<=0 then 0 else if n=1 then 1 else sum(C(n-i-1)*(a(i)+a(i-1)),i,2,n-1);
/* Vladimir Kruchinin, Apr 23 2020 */
-
{a(n) = if( n<1, 0, polcoeff( 1 / (1 + 2 / (1 - sqrt(1 - 4*x + x*O(x^n)))), n))}; /* Michael Somos, Sep 17 2006 */
-
{a(n) = if( n<1, 0, polcoeff( 1 / (1 + 1 / serreverse(x - x^2 + x*O(x^n))), n))}; /* Michael Somos, Sep 30 2006 */
-
from itertools import count, islice
def A000957_gen(): # generator of terms
yield from (0,1,0)
a, c = 0, 1
for n in count(1):
yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
A000957_list = list(islice(A000957_gen(),20)) # Chai Wah Wu, Apr 26 2023
-
def Fine():
f, c, n = 1, 1, 1
yield 0
while True:
yield f
n += 1
c = c * (4*n - 6) // n
f = (c - f) // 2
a = Fine()
print([next(a) for in range(29)]) # _Peter Luschny, Nov 30 2016
A106566
Triangle T(n,k), 0 <= k <= n, read by rows, given by [0, 1, 1, 1, 1, 1, 1, 1, ... ] DELTA [1, 0, 0, 0, 0, 0, 0, 0, ... ] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 14, 14, 9, 4, 1, 0, 42, 42, 28, 14, 5, 1, 0, 132, 132, 90, 48, 20, 6, 1, 0, 429, 429, 297, 165, 75, 27, 7, 1, 0, 1430, 1430, 1001, 572, 275, 110, 35, 8, 1, 0, 4862, 4862, 3432, 2002, 1001, 429, 154, 44, 9, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 5, 5, 3, 1;
0, 14, 14, 9, 4, 1;
0, 42, 42, 28, 14, 5, 1;
0, 132, 132, 90, 48, 20, 6, 1;
From _Paul Barry_, Sep 28 2009: (Start)
Production array is
0, 1,
0, 1, 1,
0, 1, 1, 1,
0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1 (End)
- Alois P. Heinz, Rows n = 0..140, flattened
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- D. Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- FindStat - Combinatorial Statistic Finder, The number of touch points of a Dyck path, The number of initial rises of a Dyck paths, The number of nodes on the left branch of the tree, The number of subtrees.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- L. W. Shapiro, S. Getu, W.-J. Woan and L. C. Woodson, The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
Column k for k = 0, 1, 2, ..., 13:
A000007,
A000108,
A000108,
A000245,
A002057,
A000344,
A003517,
A000588,
A003517,
A001392,
A003518,
A000589,
A003519,
A000590
Generalized Catalan numbers C(x, n) for -11 <= x <= 10:
A064333,
A064332,
A064331,
A064330,
A064329,
A064328,
A064327,
A064326,
A064325,
A064311,
A064310,
A000012,
A000108,
A064062,
A064063,
A064087,
A064088,
A064089,
A064090,
A064091,
A064092,
A064093.
-
A106566:= func< n,k | n eq 0 select 1 else (k/n)*Binomial(2*n-k-1, n-k) >;
[A106566(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 06 2021
-
A106566 := proc(n,k)
if n = 0 then
1;
elif k < 0 or k > n then
0;
else
binomial(2*n-k-1,n-k)*k/n ;
end if;
end proc: # R. J. Mathar, Mar 01 2015
-
T[n_, k_] := Binomial[2n-k-1, n-k]*k/n; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 18 2017 *)
(* The function RiordanArray is defined in A256893. *)
RiordanArray[1&, #(1-Sqrt[1-4#])/(2#)&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
-
{T(n, k) = if( k<=0 || k>n, n==0 && k==0, binomial(2*n - k, n) * k/(2*n - k))}; /* Michael Somos, Oct 01 2022 */
-
def A106566(n, k): return 1 if (n==0) else (k/n)*binomial(2*n-k-1, n-k)
flatten([[A106566(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 06 2021
A064062
Generalized Catalan numbers C(2; n).
Original entry on oeis.org
1, 1, 3, 13, 67, 381, 2307, 14589, 95235, 636925, 4341763, 30056445, 210731011, 1493303293, 10678370307, 76957679613, 558403682307, 4075996839933, 29909606989827, 220510631755773, 1632599134961667, 12133359132082173
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011) # 11.2.6, example section 3.
- Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
- J. Bloom and S. Elizalde, Pattern avoidance in matchings and partitions, arXiv:1211.3442 [math.CO] (2012) Theorem 6.1.
- N. Bonichon, C. Gavoille and N. Hanusse, Canonical Decomposition of Outerplanar Maps and Application to Enumeration, Coding and Generation, In Proceedings of WG'03, volume 2880 of LNCS, pp. 81-92, 2003.
- Alexander Burstein, Sergi Elizalde and Toufik Mansour, Restricted Dumont permutations, Dyck paths and noncrossing partitions, arXiv:math/0610234 [math.CO], 2006.
- Xiang-Ke Chang, X.-B. Hu, H. Lei and Y.-N. Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, (2017).
- Simone Fioravanti, Steve Hanneke, Shay Moran, Hilla Schefler, and Iska Tsubari, Ramsey Theorems for Trees and a General 'Private Learning Implies Online Learning' Theorem, arXiv:2407.07765 [cs.LG], 2024. See p. 44.
- Ivan Geffner and Marc Noy, Counting Outerplanar Maps, Electronic Journal of Combinatorics 24(2) (2017), #P2.3.
- N. J. A. Sloane, Transforms
- A. Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011-2012.
-
R:=PowerSeriesRing(Rationals(), 30);
Coefficients(R!( (3 - Sqrt(1-8*x))/(2*(1+x)) )); // G. C. Greubel, Sep 27 2024
-
1, seq(simplify(hypergeom([1-n,n],[-n],2)), n=1..100); # Robert Israel, Nov 30 2014
-
a[0]=1; a[1]=1; a[n_]/;n>=2 := a[n] = a[n-1] + Sum[(a[k] + a[k-1])a[n-k],{k,n-1}]; Table[a[n],{n,0,10}] (* David Callan, Aug 27 2009 *)
a[n_] := 2*Sum[ (-1)^j*2^(n-j-1)*Binomial[2*(n-j-1), n-j-1]/(n-j), {j, 0, n-1}] + (-1)^n; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 03 2013 *)
-
{a(n)=polcoeff((3-sqrt(1-8*x+x*O(x^n)))/(2+2*x),n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^2+x*O(x^n)))); polcoeff(A, n)} \\ Paul D. Hanna, Dec 24 2013
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=polcoeff(1/(1 - serreverse(x-2*x^2 +x^2*O(x^n))),n)}
for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 30 2014
-
def a(n):
if n==0: return 1
return hypergeometric([1-n, n], [-n], 2).simplify()
[a(n) for n in range(22)] # Peter Luschny, Dec 01 2014
A099039
Riordan array (1,c(-x)), where c(x) = g.f. of Catalan numbers.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 2, -2, 1, 0, -5, 5, -3, 1, 0, 14, -14, 9, -4, 1, 0, -42, 42, -28, 14, -5, 1, 0, 132, -132, 90, -48, 20, -6, 1, 0, -429, 429, -297, 165, -75, 27, -7, 1, 0, 1430, -1430, 1001, -572, 275, -110, 35, -8, 1, 0, -4862, 4862, -3432, 2002, -1001, 429, -154, 44, -9, 1, 0, 16796, -16796, 11934, -7072, 3640, -1638
Offset: 0
Rows begin {1}, {0,1}, {0,-1,1}, {0,2,-2,1}, {0,-5,5,-3,1}, ...
Triangle begins
1;
0, 1;
0, -1, 1;
0, 2, -2, 1;
0, -5, 5, -3, 1;
0, 14, -14, 9, -4, 1;
0, -42, 42, -28, 14, -5, 1;
0, 132, -132, 90, -48, 20, -6, 1;
0, -429, 429, -297, 165, -75, 27, -7, 1;
Production matrix is
0, 1,
0, -1, 1,
0, 1, -1, 1,
0, -1, 1, -1, 1,
0, 1, -1, 1, -1, 1,
0, -1, 1, -1, 1, -1, 1,
0, 1, -1, 1, -1, 1, -1, 1,
0, -1, 1, -1, 1, -1, 1, -1, 1,
0, 1, -1, 1, -1, 1, -1, 1, -1, 1
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- George Beck and Karl Dilcher, A Matrix Related to Stern Polynomials and the Prouhet-Thue-Morse Sequence, arXiv:2106.10400 [math.CO], 2021. See (2.10) p. 6.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999), 73-112.
- D. Callan, A recursive bijective approach to counting permutations containing 3-letter patterns, arXiv:math/0211380 [math.CO], 2002.
- E. Deutsch, Dyck path enumeration, Discrete Math., 204, 1999, 167-202.
- R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
- A. Robertson, D. Saracino and D. Zeilberger, Refined restricted permutations, arXiv:math/0203033 [math.CO], 2002.
- L. W. Shapiro, S. Getu, Wen-Jin Woan and L. C. Woodson, The Riordan Group, Discrete Appl. Maths. 34 (1991) 229-239.
-
T[n_, k_]:= If[n == 0 && k == 0, 1, If[n == 0 && k > 0, 0, (-1)^(n + k)*Binomial[2*n - k - 1, n - k]*k/n]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 31 2017 *)
-
{T(n,k) = if(n == 0 && k == 0, 1, if(n == 0 && k > 0, 0, (-1)^(n + k)*binomial(2*n - k - 1, n - k)*k/n))};
for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 31 2017
A064334
Triangle composed of generalized Catalan numbers.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, -1, 1, 1, 1, -2, 5, -2, 1, 1, 1, 6, -25, 13, -3, 1, 1, 1, -18, 141, -98, 25, -4, 1, 1, 1, 57, -849, 826, -251, 41, -5, 1, 1, 1, -186, 5349, -7448, 2817, -514, 61, -6, 1, 1, 1, 622, -34825, 70309, -33843, 7206, -917, 85, -7, 1, 1
Offset: 0
Triangle starts:
1;
1, 1;
1, 1, 1;
1, 0, 1, 1;
1, 1, -1, 1, 1;
1, -2, 5, -2, 1, 1; ...
- T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and Exclusion Processes, Springer, 1999, p. 269.
- G. C. Greubel, Rows n =0..100 of triangle, flattened
- B. Derrida, E. Domany and D. Mukamel, An exact solution of a one-dimensional asymmetric exclusion model with open boundaries, J. Stat. Phys. 69, 1992, 667-687; eqs. (20), (21), p. 672.
- B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, Exact solution of a 1D asymmetric exclusion model using a matrix formulation, J. Phys. A 26, 1993, 1493-1517; eq. (39), p. 1501, also appendix A1, (A12) p. 1513.
The unsigned column sequences (without leading zeros) are
A000012,
A064310-11,
A064325-33 for m=0..11, respectively. Row sums (signed) give
A064338. Row sums (unsigned) give
A064339.
-
[[k eq 0 select 1 else k eq n select 1 else (&+[(n-k-j)* Binomial(n-k-1+j, j)*(-k)^j/(n-k): j in [0..n-k-1]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 04 2019
-
Table[If[k==0, 1, If[k==n, 1, Sum[(n-k-j)*Binomial[n-k-1+j, j]*(-k)^j/(n -k), {j, 0, n-k-1}]]], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 04 2019 *)
-
{T(n,k) = if(k==0, 1, if(k==n, 1, sum(j=0, n-k-1, (n-k-j)* binomial(n-k-1+j, j)*(-k)^j/(n-k))))}; \\ G. C. Greubel, May 04 2019
-
def T(n,k):
return hypergeometric([1-n, n], [-n], -k) if n>0 else 1
for n in (0..10):
print([simplify(T(n-k,k)) for k in (0..n)]) # Peter Luschny, Nov 30 2014
A126983
Expansion of 1/(1+x*c(x)), c(x) the g.f. of Catalan numbers A000108.
Original entry on oeis.org
1, -1, 0, -1, -2, -6, -18, -57, -186, -622, -2120, -7338, -25724, -91144, -325878, -1174281, -4260282, -15548694, -57048048, -210295326, -778483932, -2892818244, -10786724388, -40347919626, -151355847012, -569274150156
Offset: 0
-
[1] cat [(-1/2)^n*(1 +(&+[(-2)^k*Binomial(2*k,k)/(k+1): k in [0..n-1]])): n in [1..30]]; // G. C. Greubel, Feb 27 2019
-
Table[(-1/2)^n*(1 + Sum[ CatalanNumber[k]*(-2)^k, {k, 0, n-1}]), {n, 0, 30}] (* G. C. Greubel, Feb 27 2019 *)
-
{a(n) = (-1/2)^n*(1+sum(k=0,n-1, (-2)^k*binomial(2*k,k)/(k+1)))};
vector(30, n, n--; a(n)) \\ G. C. Greubel, Feb 27 2019
-
from itertools import count, islice
def A126983_gen(): # generator of terms
yield from (1, -1, 0)
a, c = 0, 1
for n in count(1):
yield (a:=-a-(c:=c*((n<<2)+2)//(n+2))>>1)
A126983_list = list(islice(A126983_gen(),20)) # Chai Wah Wu, Apr 27 2023
-
[1] + [(-1/2)^n*(1 +sum((-2)^k*catalan_number(k) for k in (0..n-1))) for n in (1..30)] # G. C. Greubel, Feb 27 2019
A104629
Expansion of (1-2*x-sqrt(1-4*x))/(x^2 * (1+2*x+sqrt(1-4*x))).
Original entry on oeis.org
1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-2*x-Sqrt(1-4*x))/(x^2*(1+2*x+Sqrt(1-4*x))))); // G. C. Greubel, Aug 12 2018
-
CoefficientList[Series[((1-2x-Sqrt[1-4x])/(1+2x+Sqrt[1-4x]))/x^2,{x,0,30}],x] (* Harvey P. Dale, Jul 23 2016 *)
Table[(1 + Sum[CatalanNumber[n]*(-2)^k, {k,0,n+2}])/(8*(-2)^n), {n,0,30}] (* G. C. Greubel, Aug 12 2018 *)
-
x='x+O('x^30); Vec((1-2*x-sqrt(1-4*x))/(x^2*(1+2*x+sqrt(1-4*x)))) \\ G. C. Greubel, Aug 12 2018
-
for(n=0,30, print1((1 + sum(k=0,n+2, (-2)^k*binomial(2*k, k)/(k+1)))/(8*(-2)^n), ", ")) \\ G. C. Greubel, Aug 12 2018
-
from itertools import count, islice
def A104629_gen(): # generator of terms
a, c = 0, 1
for n in count(1):
yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
A104629_list = list(islice(A104629_gen(),20)) # Chai Wah Wu, Apr 26 2023
A064311
Generalized Catalan numbers C(-2; n).
Original entry on oeis.org
1, 1, -1, 5, -25, 141, -849, 5349, -34825, 232445, -1582081, 10938709, -76616249, 542472685, -3876400305, 27919883205, -202480492905, 1477306676445, -10836099051105, 79861379898165, -591082795606425
Offset: 0
-
a[n_] := If[n==0, 1, Sum[(n-m)*Binomial[n+m-1, m]*(-2)^m/n, {m,0,n-1}]];
Table[a[n], {n,0,20}] (* Jean-François Alcover, Jun 03 2019 *)
-
import mpmath
mp.dps = 25; mp.pretty = True
a = lambda n: mpmath.hyp2f1(1-n, n, -n, -2) if n>0 else 1
[int(a(n)) for n in range(21)] # Peter Luschny, Nov 30 2014
A114700
Triangle T, read by rows, such that the m-th matrix power satisfies T^m = I + m*(T - I), where T(n,k) = [T^-1](n-1,k) + [T^-1](n-1,k-1) for n>k>0, with T(n,0)=T(n,n)=1 for n>=0 and I is the identity matrix.
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, 1, 1, 1, 0, 0, 0, 1, 1, -1, 0, 0, 1, 1, 1, 0, 1, 0, -1, 0, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 0, 2, 2, 0, -2, -2, 0, 1, 1, -1, -2, -4, -2, 2, 4, 2, 1, 1, 1, 0, 3, 6, 6, 0, -6, -6, -3, 0, 1, 1, -1, -3, -9, -12, -6, 6, 12, 9, 3, 1, 1, 1, 0, 4, 12, 21, 18, 0, -18, -21, -12, -4, 0, 1
Offset: 0
Matrix inverse is: T^-1 = 2*I - T.
Matrix log is: log(T) = T - I.
Triangle T begins:
1;
1, 1;
1, 0, 1;
1,-1, 1, 1;
1, 0, 0, 0, 1;
1,-1, 0, 0, 1, 1;
1, 0, 1, 0,-1, 0, 1;
1,-1,-1,-1, 1, 1, 1, 1;
1, 0, 2, 2, 0,-2,-2, 0, 1;
1,-1,-2,-4,-2, 2, 4, 2, 1, 1;
1, 0, 3, 6, 6, 0,-6,-6,-3, 0, 1;
1,-1,-3,-9,-12,-6, 6, 12, 9, 3, 1, 1;
1, 0, 4, 12, 21, 18, 0,-18,-21,-12,-4, 0, 1; ...
The g.f. of column k, C_k(x), obeys the recurrence:
C_k = C_{k-1} + (-1)^k*x*(1+2*x)/(1-x)/(1+x)^k with C_0 = 1/(1-x);
so that column g.f.s continue as:
C_1 = C_0 - x*(1+2*x)/(1-x)/(1+x),
C_2 = C_1 + x*(1+2*x)/(1-x)/(1+x)^2,
C_3 = C_2 - x*(1+2*x)/(1-x)/(1+x)^3, ...
-
T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k));polcoeff(polcoeff( 1/(1-x*y)+ x*(1+x-2*x^2*y)/(1-x)/(1+x+x*y)/(1-x*y),n,X),k,Y)
-
T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1,for(c=1,r, M[r,c]=if(r==c,1,if(c==1,1,if(c>1, (2*M^0-M)[r-1,c-1])+(2*M^0-M)[r-1,c]))));return(M[n+1,k+1])
Showing 1-10 of 12 results.
Comments