cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A372228 a(n) is the largest prime factor of n^n + n.

Original entry on oeis.org

2, 3, 5, 13, 313, 101, 181, 5419, 21523361, 52579, 212601841, 57154490053, 815702161, 100621, 4454215139669, 4562284561, 52548582913, 1895634885375961, 211573, 2272727294381, 415710882920521, 9299179, 1853387306082786629, 22496867303759173834520497
Offset: 1

Views

Author

Tyler Busby, Apr 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[f = FactorInteger[n^n + n]; f[[Length[f]]][[1]], {n, 1, 25}] (* Vaclav Kotesovec, Apr 26 2024 *)
  • Python
    from sympy import primefactors
    def A372228(n): return max(max(primefactors(n),default=1),max(primefactors(n**(n-1)+1))) # Chai Wah Wu, Apr 27 2024

Formula

a(n) = A006530(A066068(n)).

A372546 Number of distinct prime factors of n^n+n.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 5, 4, 3, 7, 4, 4, 4, 8, 6, 5, 5, 6, 10, 6, 6, 10, 6, 5, 6, 8, 8, 11, 6, 7, 11, 7, 7, 13, 7, 9, 8, 7, 5, 10, 7, 7, 12, 7, 9, 18, 6, 7, 10, 10, 11, 11, 10, 9, 14, 12, 12, 11, 7, 9, 13, 6, 7, 16, 5, 14, 10, 7, 7, 15, 11, 7, 13, 7, 8, 16, 9, 13
Offset: 1

Views

Author

Tyler Busby, May 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := PrimeNu[n^n + n]; Array[a, 40] (* Amiram Eldar, Oct 29 2024 *)
  • PARI
    a(n) = omega(n^n+n);
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A372546(n): return primenu(n*(n**(n-1)+1)) # Chai Wah Wu, May 07 2024

Formula

a(n) = A001221(A066068(n)).

A377671 Number of prime factors of n^n+n (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 6, 7, 4, 7, 4, 5, 4, 8, 6, 8, 5, 7, 11, 7, 6, 10, 6, 8, 7, 10, 10, 12, 6, 7, 11, 11, 7, 13, 7, 11, 8, 7, 5, 12, 7, 7, 13, 9, 10, 18, 6, 11, 11, 11, 11, 12, 10, 11, 14, 14, 12, 11, 7, 10, 13, 7, 8, 21, 5, 14, 10, 8, 7, 15, 11, 10, 13, 8, 9, 17
Offset: 1

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Maple
    seq(numtheory:-bigomega(n^n+n),n=1..76); # Robert Israel, Nov 03 2024
  • Mathematica
    a[n_] := PrimeOmega[n^n + n]; Array[a, 45] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = bigomega(n^n+n);

Formula

a(n) = A001222(A066068(n)).

A231712 a(n) = n^n + n - 1.

Original entry on oeis.org

0, 1, 5, 29, 259, 3129, 46661, 823549, 16777223, 387420497, 10000000009, 285311670621, 8916100448267, 302875106592265, 11112006825558029, 437893890380859389, 18446744073709551631, 827240261886336764193, 39346408075296537575441, 1978419655660313589123997
Offset: 0

Views

Author

Jaroslav Krizek, Nov 12 2013

Keywords

Comments

Supersequence of A187605 (primes of the form n^n + n - 1).
Numbers n such that a(n) = prime: 2, 3, 19, 30, 535, 1551, ..., another term > 2300 (see A058912 and A187605).
Also generalization of the problem: "What is the minimum length of a text consisting only of the first n letters of the alphabet and containing all possible n-tuples (no blanks)?" (see Puzzleup link). Example for n = 3, length of text a(3) = 29: AAABAACABBABCACBACCBBBCBCCCAA, all triples (AAA, AAB, ..., CCC) occurring exactly once. - Jörg Zurkirchen, Sep 06 2014

Crossrefs

Programs

Formula

a(n) = A066279(n) - 2 = A066068(n) - 1.
E.g.f.: 1/(1 + LambertW(-x)) + (x-1)*exp(x). - Alois P. Heinz, Jun 15 2018

A377672 a(n) is the number of divisors of n^n + n.

Original entry on oeis.org

2, 4, 8, 12, 8, 32, 48, 48, 12, 128, 16, 24, 16, 256, 64, 80, 32, 96, 1536, 96, 64, 1024, 64, 96, 96, 512, 512, 3072, 64, 128, 2048, 384, 128, 8192, 128, 1152, 256, 128, 32, 2048, 128, 128, 6144, 288, 768, 262144, 64, 480, 1536, 1536, 2048, 3072, 1024, 1024
Offset: 1

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[0, n^n + n]; Array[a, 45] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = numdiv(n^n+n);

Formula

a(n) = A000005(A066068(n)).

A377673 a(n) is the sum of the divisors of n^n + n.

Original entry on oeis.org

3, 12, 72, 588, 5652, 117504, 1895712, 46503600, 839411118, 25440307200, 474527311344, 22404560101168, 489294047662728, 30902868417576960, 1096805935992340800, 38000593697802058224, 1318965178069293272496, 90596485743469636057920, 3578317312662511683264000
Offset: 1

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, n^n + n]; Array[a, 20] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = sigma(n^n+n);

Formula

a(n) = A000203(A066068(n)).

A377674 a(n) = phi(n^n + n) where phi is the Euler totient function.

Original entry on oeis.org

1, 2, 8, 96, 1248, 12000, 259200, 5461344, 129140160, 2725643520, 127561104000, 2743415522496, 139778722137600, 2504616361228800, 111747349423990784, 8644660582219776000, 387774574486565683200, 12306643656809728412160, 816897235219321957908480
Offset: 1

Views

Author

Sean A. Irvine, Nov 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := EulerPhi[n^n + n]; Array[a, 20] (* Amiram Eldar, Nov 04 2024 *)
  • PARI
    a(n) = eulerphi(n^n+n);

Formula

a(n) = A000010(A066068(n)).

A117694 a(n) = (n^n + n)/2.

Original entry on oeis.org

1, 3, 15, 130, 1565, 23331, 411775, 8388612, 193710249, 5000000005, 142655835311, 4458050224134, 151437553296133, 5556003412779015, 218946945190429695, 9223372036854775816, 413620130943168382097, 19673204037648268787721
Offset: 1

Views

Author

Alexander Adamchuk, Apr 12 2006

Keywords

Crossrefs

Cf. A066068.

Programs

  • Magma
    [(n+n^n)/2: n in [1..30]]; // G. C. Greubel, Jul 23 2023
    
  • Mathematica
    Table[n^n+n, {n,30}]/2
  • SageMath
    [(n+n^n)/2 for n in range(1,31)] # G. C. Greubel, Jul 23 2023

Formula

a(n) = (n^n + n)/2.
a(n) = A066068(n)/2, for n > 0.
E.g.f.: (1/2)*(x*exp(x) - LambertW(-x)/(1 + LambertW(-x))). - G. C. Greubel, Jul 23 2023

A342707 T(n, k) is the result of replacing 2's by k's in the hereditary base-2 expansion of n; square array T(n, k) read by antidiagonals upwards, n, k >= 0.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 1, 0, 2, 1, 3, 3, 1, 0, 1, 2, 4, 4, 4, 1, 0, 2, 2, 5, 27, 5, 5, 1, 0, 0, 3, 6, 28, 256, 6, 6, 1, 0, 1, 1, 7, 30, 257, 3125, 7, 7, 1, 0, 0, 2, 8, 31, 260, 3126, 46656, 8, 8, 1, 0, 1, 2, 9, 81, 261, 3130, 46657, 823543, 9, 9, 1, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 04 2021

Keywords

Examples

			Array T(n, k) begins:
  n\k|  0  1   2   3     4      5       6        7          8           9
  ---+-------------------------------------------------------------------
    0|  0  0   0   0     0      0       0        0          0           0
    1|  1  1   1   1     1      1       1        1          1           1
    2|  0  1   2   3     4      5       6        7          8           9
    3|  1  2   3   4     5      6       7        8          9          10
    4|  1  1   4  27   256   3125   46656   823543   16777216   387420489
    5|  2  2   5  28   257   3126   46657   823544   16777217   387420490
    6|  1  2   6  30   260   3130   46662   823550   16777224   387420498
    7|  2  3   7  31   261   3131   46663   823551   16777225   387420499
    8|  0  1   8  81  1024  15625  279936  5764801  134217728  3486784401
    9|  1  2   9  82  1025  15626  279937  5764802  134217729  3486784402
   10|  0  2  10  84  1028  15630  279942  5764808  134217736  3486784410
		

Crossrefs

See A341907 for a similar sequence.

Programs

  • PARI
    T(n,k) = { my (v=0, e); while (n, n-=2^e=valuation(n,2); v+=k^T(e,k)); v }

Formula

T(n, n) = A343255(n).
T(n, 0) = A345021(n).
T(n, 1) = A000120(n).
T(n, 2) = n.
T(n, 3) = A222112(n-1).
T(0, k) = 0.
T(1, k) = 1.
T(2, k) = k.
T(3, k) = k + 1.
T(4, k) = k^k = A000312(k).
T(5, k) = k^k + 1 = A014566(k).
T(6, k) = k^k + k = A066068(k).
T(7, k) = k^k + k + 1 = A066279(k).
T(16, k) = k^k^k = A002488(k).
T(m + n, k) = T(m, k) + T(n, k) when m AND n = 0 (where AND denotes the bitwise AND operator).

A302989 a(n) = n^n + n*n + n.

Original entry on oeis.org

1, 3, 10, 39, 276, 3155, 46698, 823599, 16777288, 387420579, 10000000110, 285311670743, 8916100448412, 302875106592435, 11112006825558226, 437893890380859615, 18446744073709551888, 827240261886336764483, 39346408075296537575766, 1978419655660313589124359
Offset: 0

Views

Author

Alex Ratushnyak, Apr 17 2018

Keywords

Examples

			a(3) = 3^3 + 3*3 + 3 = 27 + 9 + 3 = 39.
		

Crossrefs

Programs

Formula

a(n) = A066141(n) * n + A000007(n).
From Alois P. Heinz, May 28 2018: (Start)
E.g.f.: 1/(1+LambertW(-x)) + exp(x)*(2*x+x^2).
a(n) = A001477(n) + A000290(n) + A000312(n). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, May 28 2018
Showing 1-10 of 12 results. Next