cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A100371 a(n) = 2^phi(n) - 1 = A066781(n) - 1.

Original entry on oeis.org

1, 1, 3, 3, 15, 3, 63, 15, 63, 15, 1023, 15, 4095, 63, 255, 255, 65535, 63, 262143, 255, 4095, 1023, 4194303, 255, 1048575, 4095, 262143, 4095, 268435455, 255, 1073741823, 65535, 1048575, 65535, 16777215, 4095, 68719476735, 262143, 16777215, 65535
Offset: 1

Views

Author

Labos Elemer, Nov 30 2004

Keywords

Comments

Number of nonempty subsets of reduced residue system [RRS(n)] modulo n.

Crossrefs

Programs

  • Maple
    A100371:=n->2^numtheory[phi](n)-1: seq(A100371(n), n=1..60); # Wesley Ivan Hurt, Apr 14 2017
  • Mathematica
    Table[2^EulerPhi[n] - 1, {n, 1, 50}]
  • PARI
    a(n) = 2^eulerphi(n) - 1; \\ Michel Marcus, Apr 14 2017
    
  • Python
    from sympy import totient
    def a(n): return 2**totient(n) - 1 # Indranil Ghosh, Apr 14 2017

Formula

a(n) = Sum_{i=1..n} binomial(phi(n), i). - Enrique Pérez Herrero, Mar 10 2012

Extensions

Entry revised by N. J. A. Sloane, Jun 07 2013

A243305 a(n) = 2^phi(n)+1 = A066781(n)+1.

Original entry on oeis.org

3, 3, 5, 5, 17, 5, 65, 17, 65, 17, 1025, 17, 4097, 65, 257, 257, 65537, 65, 262145, 257, 4097, 1025, 4194305, 257, 1048577, 4097, 262145, 4097, 268435457, 257, 1073741825, 65537, 1048577, 65537, 16777217, 4097, 68719476737, 262145, 16777217, 65537, 1099511627777
Offset: 1

Views

Author

Vincenzo Librandi, Jun 04 2014

Keywords

Crossrefs

Programs

  • Magma
    [2^EulerPhi(n)+1: n in [1..41]];
  • Maple
    with(numtheory); A243305:=n->2^phi(n)+1; seq(A243305(n), n=1..50); # Wesley Ivan Hurt, Jun 04 2014
  • Mathematica
    Table[2^EulerPhi[n] + 1, {n, 1, 50}]

Formula

a(n) = 2^A000010(n) + 1. - Wesley Ivan Hurt, Jun 04 2014

A100587 Number of nonempty subsets of divisors of n.

Original entry on oeis.org

1, 3, 3, 7, 3, 15, 3, 15, 7, 15, 3, 63, 3, 15, 15, 31, 3, 63, 3, 63, 15, 15, 3, 255, 7, 15, 15, 63, 3, 255, 3, 63, 15, 15, 15, 511, 3, 15, 15, 255, 3, 255, 3, 63, 63, 15, 3, 1023, 7, 63, 15, 63, 3, 255, 15, 255, 15, 15, 3, 4095, 3, 15, 63, 127, 15, 255, 3, 63, 15, 255, 3, 4095, 3
Offset: 1

Views

Author

Labos Elemer, Dec 01 2004

Keywords

Comments

A119347(n) <= a(n). - Reinhard Zumkeller, Jun 27 2015

Examples

			For all prime numbers p, a(p)=3, since those subsets are {{1,p},{1},{p}}.
		

Crossrefs

Programs

Formula

a(n) = -1 + 2^tau(n), where tau(n) = DivisorSigma(0, n) = A000005(n).

A292544 Numbers h such that 2^phi(h) == phi(h) (mod h).

Original entry on oeis.org

1, 12, 40, 48, 60, 192, 544, 640, 680, 704, 768, 816, 960, 1020, 1664, 3072, 10240, 11008, 12288, 13760, 15360, 19456, 24320, 49152, 83968, 125952, 131584, 139264, 139808, 163840, 164480, 174080, 174760, 196608, 197376, 208896, 209712, 245760, 246720, 261120, 262140, 720896, 786432
Offset: 1

Views

Author

Max Alekseyev and Altug Alkan, Sep 18 2017

Keywords

Comments

Conjecture: For n > 1, a(n) is a Zumkeller number (A083207) [confirmed for n up to 47]. - Ivan N. Ianakiev, Sep 22 2017

Examples

			704 = 11*2^6 is a term since phi(11*2^6) = 5*2^6 and 11*2^6 divides 2^(5*2^6) - 5*2^6.
		

Crossrefs

Programs

  • Mathematica
    {1}~Join~Select[Range[10^6], Function[n, # == PowerMod[2, #, n] &@ EulerPhi@ n]] (* Michael De Vlieger, Sep 18 2017 *)
  • PARI
    isok(n) = Mod(2, n)^eulerphi(n)==eulerphi(n);

Formula

Let m be an odd number, z = A007733(m) and k, 0 <= k < z, be such that phi(m) == 2^k (mod m); then m*2^(i*z - k + 1) belongs to this sequence for all i >= 1. And this is a general form of the terms of this sequence.
Some families of solutions of the form m*2^(i*z - k + 1):
If m = 3, then z = 2 and k = 1 ==> 3*2^(2*i) is a term for all i >= 1.
If m = 5, then z = 4 and k = 2 ==> 5*2^(4*i-1) is a term for all i >= 1.
If m = 7, then z = 3 but k does not exist ==> no term with odd part equal to 7.
If m = 15, then z = 4 and k = 3 ==> 15*2^(4*i-2) is a term for all i >= 1.
If m = 77, then z = 30 and k = 14 ==> 77*2^(30*i-13) is a term for all i >= 1.

A073318 a(n) = 2^phi(n) - Sum_{j=0..n} binomial(phi(n), phi(j)).

Original entry on oeis.org

0, -1, -2, -3, -6, -4, -10, -13, -26, -14, -183, -15, -22, -57, -210, -211, -1730, -58, 25160, -240, -3356, -949, 238031, -241, -256823, -3918, -143243, -3919, 46326924, -242, 281620682, -61817, -639769, -61818, -4718174, -4415, 2023569890, -224436, -7556927, -63639, -43279525745, -4416
Offset: 1

Views

Author

Labos Elemer, Jul 26 2002

Keywords

Comments

a(n) > 0 for {19, 23, 29, 31, 37, 43, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}. Does this hold only for special primes?
No: composites for which a(n) > 0 include 121, 289, 437, 529, 667, 671, 697, 703, 713, 731, .... - Robert Israel, Jan 23 2021

Crossrefs

Programs

  • Mathematica
    g[x_] := EulerPhi[x] Table[Apply[Plus, Table[Binomial[g[n], g[j]], {j, 0, n}]], {n, 1, 50}]

Formula

a(n) = A066781(n) - A073317(n).

A073317 a(n)=Sum_{j = 0..n} binomial(phi(n),phi(j)).

Original entry on oeis.org

2, 3, 6, 7, 22, 8, 74, 29, 90, 30, 1207, 31, 4118, 121, 466, 467, 67266, 122, 236984, 496, 7452, 1973, 3956273, 497, 1305399, 8014, 405387, 8015, 222108532, 498, 792121142, 127353, 1688345, 127354, 21495390, 8511, 66695906846, 486580
Offset: 1

Views

Author

Labos Elemer, Jul 26 2002

Keywords

Crossrefs

Programs

  • Mathematica
    g[x_] := EulerPhi[x] Table[Apply[Plus, Table[Binomial[g[n], g[j]], {j, 0, n}]], {n, 1, 50}]

A189914 a(n) is 2^phi(n) times the least common multiple of the proper divisors of n.

Original entry on oeis.org

1, 2, 2, 4, 8, 16, 24, 64, 64, 192, 160, 1024, 192, 4096, 896, 3840, 2048, 65536, 1152, 262144, 5120, 86016, 22528, 4194304, 6144, 5242880, 106496, 2359296, 114688, 268435456, 7680, 1073741824, 1048576, 34603008, 2228224, 587202560, 147456, 68719476736, 9961472
Offset: 0

Views

Author

Peter Luschny, Jun 22 2011

Keywords

Comments

The sequence relates arithmetic properties of roots of unity in the complex plane with number theoretic properties of integers. This connection often appears as intriguing identities showing products of specific values of the sine function or the gamma function reducing to simple values (see for instance the first formula below).

Programs

  • Maple
    A189914 := n -> 2^numtheory[phi](n)*ilcm(op(numtheory[divisors](n) minus {1,n})): seq(A189914(n), n=0..35);
  • Mathematica
    a[n_] := 2^EulerPhi[n] * LCM @@ Most[Divisors[n]]; a[0] = 1; a[1] = 2; Table[a[n], {n, 0, 38}] (* Jean-François Alcover, Jan 22 2014 *)
  • PARI
    a(n)=if(n,my(p=n); if(isprime(n)||(ispower(n, , &p)&&isprime(p)), n/p, n)<Charles R Greathouse IV, Jun 24 2011

Formula

Let R(n) = {k | gcd(n,k) = 1, k = 1..floor(n/2)} and b(n) = product_{R(n)} sin(Pi*k/n) then a(n) = n / b(n)^2 for n > 1.
a(n) = A066781(n)*A048671(n).

A243306 2^phi(n) - phi(n).

Original entry on oeis.org

1, 1, 2, 2, 12, 2, 58, 12, 58, 12, 1014, 12, 4084, 58, 248, 248, 65520, 58, 262126, 248, 4084, 1014, 4194282, 248, 1048556, 4084, 262126, 4084, 268435428, 248, 1073741794, 65520, 1048556, 65520, 16777192, 4084, 68719476700, 262126, 16777192, 65520
Offset: 1

Views

Author

Vincenzo Librandi, Jun 04 2014

Keywords

Crossrefs

Programs

  • Magma
    [2^EulerPhi(n)-EulerPhi(n): n in [1..40]];
  • Maple
    with(numtheory); A243306:=n->2^phi(n)-phi(n); seq(A243306(n), n=1..50); # Wesley Ivan Hurt, Jun 04 2014
  • Mathematica
    Table[2^EulerPhi[n] - EulerPhi[n], {n, 1, 50}]
    2^#-#&/@EulerPhi[Range[50]] (* Harvey P. Dale, Dec 19 2017 *)

Formula

a(n) = A066781(n) - A000010(n). - Wesley Ivan Hurt, Jun 04 2014

A243307 a(n) = 2^phi(n) + phi(n).

Original entry on oeis.org

3, 3, 6, 6, 20, 6, 70, 20, 70, 20, 1034, 20, 4108, 70, 264, 264, 65552, 70, 262162, 264, 4108, 1034, 4194326, 264, 1048596, 4108, 262162, 4108, 268435484, 264, 1073741854, 65552, 1048596, 65552, 16777240, 4108, 68719476772, 262162, 16777240, 65552
Offset: 1

Views

Author

Vincenzo Librandi, Jun 04 2014

Keywords

Examples

			From _Muniru A Asiru_, Jan 23 2018: (Start)
phi(1) = 1 -> a(1) = 2^1 + 1 = 3.
phi(2) = 1 -> a(2) = 2^1 + 1 = 3.
phi(7) = 6 -> a(7) = 2^6 + 6 = 70.
phi(10) = 4 -> a(10) = 2^4 + 4 = 20.
(End)
		

Crossrefs

Programs

  • GAP
    List([1..1000], n -> 2^Phi(n) + Phi(n)); # Muniru A Asiru, Jan 23 2018
  • Magma
    [2^EulerPhi(n)+EulerPhi(n): n in [1..40]];
    
  • Maple
    with(numtheory); A243307:=n->2^phi(n)+phi(n); seq(A243307(n), n=1..50); # Wesley Ivan Hurt, Jun 04 2014
  • Mathematica
    Table[2^EulerPhi[n] + EulerPhi[n], {n, 1, 50}]

Formula

a(n) = A066781(n) + A000010(n). - Wesley Ivan Hurt, Jun 04 2014

A073319 Numbers n such that A073318(n) = 2^phi(n) - Sum_{j=0..n} binomial(phi(n), phi(j)) is positive.

Original entry on oeis.org

19, 23, 29, 31, 37, 43, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293
Offset: 1

Views

Author

Labos Elemer, Jul 26 2002

Keywords

Examples

			Several values are composites: 121, 289, 437, 529, ..., 961, 989. Primes like 2, ..., 17, 41 are not here.
		

Crossrefs

Programs

  • Mathematica
    g[x_] := EulerPhi[x] Do[s=2^g[n]-Apply[Plus, Table[Binomial[g[n], g[j]], {j, 0, n}]]; If[Sign[s]==1&&!PrimeQ[n], k=k+1; Print[{k, n, PrimeQ[n]}]], {n, 1, 1000}]

Formula

Solutions to A066781(x) - A073317(x) > 0.
Showing 1-10 of 12 results. Next