cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A324322 Numbers k such that Ld(k) == k (mod Rd(k)), where Ld(k) = A067080 and Rd(k) = A067079.

Original entry on oeis.org

12, 13, 14, 15, 16, 17, 18, 19, 32, 43, 52, 54, 65, 72, 73, 76, 87, 92, 94, 98, 103, 352, 461, 571, 792, 803, 1003
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2019

Keywords

Comments

No other term up to 2*10^10. - Giovanni Resta, Feb 22 2019

Examples

			Ld(792) = 792*79*7 = 437976, Rd(792) = 792*92*2 = 145728 and 437976 == 792 (mod 145728).
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(n) local a,k;
    a:=mul(n mod 10^k, k=1..ilog10(n)+1): if a>0 then
    if n=mul(trunc(n/10^k), k=0..ilog10(n)) mod a then n;
    fi; fi; end: seq(P(i),i=1..1100);
  • Mathematica
    Select[Range[10^6], If[#2 != 0, Mod[Times @@ Map[FromDigits, NestWhileList[Most@ # &, IntegerDigits@ #1, Length@ # > 1 &]], #2] == #1] & @@ {#, Times @@ Map[FromDigits, NestWhileList[Rest@ # &, IntegerDigits@ #, Length@ # > 1 &]]} &] (* Michael De Vlieger, Feb 25 2019 *)
  • PARI
    Ld(n) = my(t=n); while(n\=10, t*=n); t; \\ A067080
    Rd(n) = prod(k=1, logint(n+!n, 10)+1, n-n\10^k*10^k); \\ A067079
    isok(k) = if (k % 10, (Ld(k) % Rd(k)) == k); \\ Michel Marcus, Jan 15 2023

A324321 Numbers k such that Rd(k) == k (mod Ld(k)), where Rd(k) = A067079 and Ld(k) = A067080.

Original entry on oeis.org

21, 23, 25, 27, 29, 31, 34, 37, 41, 45, 49, 51, 56, 61, 67, 71, 78, 81, 89, 91, 101, 109, 114, 118, 145, 175, 201, 209, 251, 267, 301, 365, 401, 501, 529, 601, 701, 801, 901, 1001, 1639, 2001, 3001, 4001, 5001, 6001, 7001, 8001, 9001, 10001, 20001, 30001, 40001
Offset: 1

Views

Author

Paolo P. Lava, Feb 22 2019

Keywords

Comments

All numbers of the form d*10^k+1, where d = 1,2,3,4,5,6,7,8,9 and k>0, are part of the sequence except 11.

Examples

			Rd(1639) = 1639*639*39*9 = 367609671, Ld(1639) = 1639*163*16*1 = 4274512 and 367609671 == 1639 (mod 4274512).
		

Crossrefs

Programs

  • Maple
    op(select(n->n=mul(n mod 10^k, k=1..ilog10(n)+1) mod mul(trunc(n/10^k), k=0..ilog10(n)),[$1..40001]));
  • Mathematica
    Select[Range[10^5], Mod[Times @@ Map[FromDigits, NestWhileList[Rest@ # &, IntegerDigits@ #, Length@ # > 1 &]], Times @@ Map[FromDigits, NestWhileList[Most@ # &, IntegerDigits@ #, Length@ # > 1 &]]] == # &] (* Michael De Vlieger, Feb 25 2019 *)

A067080 If n = ab...def in decimal notation then the left digitorial function Ld(n) = ab...def*ab...de*ab...d*...*ab*a.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 360, 366, 372
Offset: 1

Views

Author

Amarnath Murthy, Jan 05 2002

Keywords

Comments

This entry should probably start at n=0, just as A067079 does. But that would require a number of changes, so it can wait until the editors have more free time. - N. J. A. Sloane, Nov 29 2014

Examples

			Ld(256) = 256*25*2 =12800.
a(31)=floor(31/10^0)*floor(31/10^1)=31*3=93;
a(42)=168 since 42=42(base-10) and so a(42)=42*4(base-10)=42*4=168.
		

Crossrefs

For formulas regarding a general parameter p (i.e. terms floor(n/p^k)) see A132264.
For the product of terms floor(n/p^k) for p=2 to p=12 see A098844(p=2), A132027(p=3)-A132033(p=9), A132263(p=11), A132264(p=12).
For the products of terms 1+floor(n/p^k) see A132269-A132272, A132327, A132328.

Programs

  • Haskell
    a067080 n = if n <= 9 then n else n * a067080 (n `div` 10)
    -- Reinhard Zumkeller, Nov 29 2012
  • Mathematica
    Table[d = IntegerDigits[n]; rd = 1; While[ Length[d] > 0, rd = rd*FromDigits[d]; d = Drop[d, -1]]; rd, {n, 1, 75} ]
    Table[Times@@NestList[Quotient[#,10]&,n,IntegerLength[n]-1],{n,70}] (* Harvey P. Dale, Dec 16 2013 *)
  • PARI
    a(n)=my(t=n);while(n\=10,t*=n); t \\ Charles R Greathouse IV, Nov 20 2012
    

Formula

a(n) = Product_{k=1..length(n)} floor(n/10^(k-1)). - Vladeta Jovovic, Jan 08 2002
From Hieronymus Fischer, Aug 13 2007: (Start)
a(n) = product{0<=k<=floor(log_10(n)), floor(n/10^k)}, n>=1.
Recurrence:
a(n) = n*a(floor(n/10));
a(n*10^m) = n^m*10^(m(m+1)/2)*a(n).
a(k*10^m) = k^(m+1)*10^(m(m+1)/2), for 0
a(n) <= b(n), where b(n)=n^(1+floor(log_10(n)))/10^(1/2*(1+floor(log_10(n)))*floor(log_10(n))); equality holds for n=k*10^m, m>=0, 1<=k<10. Here b(n) can also be written n^(1+floor(log_10(n)))/10^A000217(floor(log_10(n))).
Also: a(n) <= 3^((1-log_10(3))/2)*n^((1+log_10(n))/2)=1.332718...*10^A000217(log_10(n)), equality for n=3*10^m, m>=0.
a(n) > c*b(n), where c=0.472362443816572... (see constant A132026).
Also: a(n) > c*2^((1-log_10(2))/2)*n^((1+log_10(n))/2) = 0.601839...*10^A000217(log_10(n)).
lim inf a(n)/b(n) = 0.472362443816572..., for n-->oo.
lim sup a(n)/b(n) = 1, for n-->oo.
lim inf a(n)/n^((1+log_10(n))/2) = 0.472362443816572...*sqrt(2)/2^log_10(sqrt(2)), for n-->oo.
lim sup a(n)/n^((1+log_10(n))/2) = sqrt(3)/3^log_10(sqrt(3)), for n-->oo.
lim inf a(n)/a(n+1) = 0.472362443816572... for n-->oo (see constant A132026).
a(n) = O(n^((1+log_10(n))/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jan 07 2002

A065039 If n in base 10 is d_1 d_2 ... d_k then a(n) = d_1 + d_1d_2 + d_1d_2d_3 + ... + d_1...d_k.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70
Offset: 0

Author

Santi Spadaro, Nov 04 2001

Keywords

Comments

a(n) = (D(n) - sod(n))/9, for n >= 1, with sod(n) the sum of digits of n, and with D(n) any of the 10 numbers given in base 10 representation by d_(nod(n)-1) d_(nod(n)-2) ... d_0 b_0, where nod(n) is the number of digits of n = d_(nod(n)-1) d_(nod(n)-2) ... d_0 in base 10, and b_0 from {0, 1, ..., 9}. E.g., D(1234) stands for any number from {12340, 12341, ..., 12349}. This corresponds the well known (and easy to prove) rule that any number after subtraction of its sum of digits is divisible by 9. In this subtraction any of the last digit b_0 leads to the same result. Some mathematical tricks are based on this rule. See the Gardner reference. - Wolfdieter Lang, May 04 2010

Examples

			a(1234)=1370 because 1+12+123+1234=1370.
With repunits: a(1234) = 4*1 + 3*11 + 2*111 + 1*1111 = 1370. - _Wolfdieter Lang_, May 04 2010
		

References

  • M. Gardner, Mathematische Zaubereien, Dumont, 2004, p. 39. German translation of: Mathematics, Magic and Mystery, Dover, 1956. [From Wolfdieter Lang, May 04 2010]

Crossrefs

Programs

  • Haskell
    import Data.List (inits)
    a065039 n = sum $ map read $ tail $ inits $ show n
    -- Reinhard Zumkeller, Mar 31 2011
  • Maple
    A065039 := proc(n) local d,m: d:=convert(n,base,10): m:=nops(d): return add(op(convert(d[(m-k+1)..m], base, 10, 10^m)),k=1..m): end: seq(A065039(n),n=0..64); # Nathaniel Johnston, Jun 27 2011
  • Mathematica
    a[n_] := Apply[Plus, Table[FromDigits[Take[IntegerDigits[n], k]], {k, 1, Length[IntegerDigits[n]]}]]
    Table[d = IntegerDigits[n]; rd = 0; While[ Length[d] > 0, rd = rd + FromDigits[d]; d = Drop[d, -1]]; rd, {n, 0, 75} ]
    f[n_] := Plus @@ NestList[ Quotient[ #, 10] &, n, Max[1, Floor@ Log[10, n]]]; Array[f, 70, 0] (* Robert G. Wilson v, Jun 29 2010 *)
    Array[Total[Table[FromDigits[Take[IntegerDigits[#],x]],{x, IntegerLength[ #]}]]&,100,0](* Harvey P. Dale, Jan 02 2016 *)
  • PARI
    { for (n=0, 1000, a=0; k=n; until (k==0, a+=k; k\=10); write("b065039.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 04 2009
    

Formula

a(n) = sum( k>=0, floor(n/10^ k)) = n+A054899(n). - Benoit Cloitre, Aug 03 2002
From Hieronymus Fischer, Aug 14 2007: (Start)
a(10*n)=10*n+a(n); a(n*10^m)=10*n*(10^m-1)/9+a(n).
a(k*10^m)=k*(10^(m+1)-1)/2, 0<=k<10, m>=0.
a(n)=10/9*n+O(log(n)), a(n+1)-a(n)=O(log(n)); this follows from the inequalities below.
a(n)<=(10*n-1)/9; equality holds for powers of 10.
a(n)>=(10*n-9)/9-floor(log_10(n)); equality holds for n=10^m-1, m>0.
lim inf (10*n/9-a(n))=1/9, for n-->oo.
lim sup (10*n/9-log_10(n)-a(n))=0, for n-->oo.
lim sup (a(n+1)-a(n)-log_10(n))=1, for n-->oo.
G.f.: sum{k>=0, x^(10^k)/(1-x^(10^k))}/(1-x).
(End)
a(n) = sum(d_(k)*RU(k+1),k=0..nod(n)-1), with the notation nod(n)and d_k given in a comment above, and RU(k)is the repunit (10^k-1)/9 (k times 1). - Wolfdieter Lang, May 04 2010

A132772 a(n) = n*(n + 30).

Original entry on oeis.org

0, 31, 64, 99, 136, 175, 216, 259, 304, 351, 400, 451, 504, 559, 616, 675, 736, 799, 864, 931, 1000, 1071, 1144, 1219, 1296, 1375, 1456, 1539, 1624, 1711, 1800, 1891, 1984, 2079, 2176, 2275, 2376, 2479, 2584, 2691, 2800, 2911, 3024, 3139, 3256, 3375, 3496, 3619
Offset: 0

Author

Omar E. Pol, Aug 28 2007

Keywords

Programs

Formula

G.f.: x*(31-29*x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*n + a(n-1) + 29 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=31, a(2)=64, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 06 2015
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(30)/30 = A001008(30)/A102928(30) = 9304682830147/69872686884000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 225175759291/9981812412000. (End)
E.g.f.: x*(31 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A067082 If n = abc...def in decimal notation then the right digit sum function = abc...def + bc...def + c...def + ... + def + ef + f.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 70, 72
Offset: 0

Author

Amarnath Murthy, Jan 05 2002

Keywords

Examples

			a(256) = 256 + 56 + 6 = 318.
		

Crossrefs

Programs

  • Mathematica
    Table[d = IntegerDigits[n]; rd = 0; While[ Length[d] > 0, rd = rd + FromDigits[d]; d = Drop[d, 1]]; rd, {n, 0, 75} ]

Formula

a(abcd) = abcd+(abcd-1000a)+(abcd-1000a-100b)+(abcd-1000a-100b-10c).
n*length(n)-Sum_{k=1..length(n)} 10^k*floor(n/10^k). - Vladeta Jovovic, Jan 08 2002

Extensions

More terms from Robert G. Wilson v, Jan 07 2002

A321243 a(n) is the product of n and all its decimal digits individually except the leftmost digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 24, 39, 56, 75, 96, 119, 144, 171, 0, 21, 44, 69, 96, 125, 156, 189, 224, 261, 0, 31, 64, 99, 136, 175, 216, 259, 304, 351, 0, 41, 84, 129, 176, 225, 276, 329, 384, 441, 0, 51, 104, 159, 216, 275, 336, 399, 464, 531
Offset: 0

Author

Jacob Swales, Nov 14 2018

Keywords

Comments

First differs from A067079 at n=102: A067079(102) = 408 != a(102) = 0.

Examples

			a(33) = 33*3 = 99. a(234) = 234*3*4 = 2808.
		

Crossrefs

Cf. A067079.

Programs

  • Mathematica
    a[n_] := n * If[n<10, 1, Times@@Rest[IntegerDigits[n]]]; Array[a, 100, 0] (* Amiram Eldar, Nov 15 2018 *)
    Table[n Times@@Rest[IntegerDigits[n]],{n,0,60}] (* Harvey P. Dale, Mar 06 2023 *)
  • Python
    def a(n):
        seq_num = n
        for letter in range(len(str(n))):
            if letter != 0:
                seq_num = seq_num * int(str(n)[letter])
        return seq_num

A071714 Numbers n such that Rd(n) + Ld(n) +/-1 is prime, where Rd and Ld are the right- and left-digital factorial functions.

Original entry on oeis.org

2, 3, 6, 9, 33, 90, 102, 195, 210, 276, 379, 380, 402, 414, 575, 588, 616, 618, 916, 939, 980, 984, 1110, 1112, 1210, 1314, 1614, 2132, 2136, 2166, 2190, 2280, 2372, 2394, 2438, 2468, 2730, 2780, 3360, 3436, 3510, 3816, 3842, 3940, 3950, 4222, 4236, 4344
Offset: 1

Author

Jason Earls, Jun 03 2002

Keywords

Examples

			195 is a term because (195*95*5)+(195*19*1)+1 = 96331 and (195*95*5)+(195*19*1)-1 = 96329 are both prime.
		

Crossrefs

Showing 1-8 of 8 results.