A101096
Third differences of fifth powers (A000584).
Original entry on oeis.org
1, 29, 150, 390, 750, 1230, 1830, 2550, 3390, 4350, 5430, 6630, 7950, 9390, 10950, 12630, 14430, 16350, 18390, 20550, 22830, 25230, 27750, 30390, 33150, 36030, 39030, 42150, 45390, 48750, 52230, 55830, 59550, 63390, 67350, 71430, 75630, 79950, 84390, 88950
Offset: 1
Cecilia Rossiter, Dec 15 2004
- Danny Rorabaugh, Table of n, a(n) for n = 1..10000
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- David J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al.), National Center for Mathematics Education, University of Gothenburg, Sweden, 2003.
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Archive machine link]
- Cecilia Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube [Cached copy, May 15 2013]
- Eric Weisstein, Link to section of MathWorld: Worpitzky's Identity of 1883.
- Eric Weisstein, Link to section of MathWorld: Eulerian Number.
- Eric Weisstein, Link to section of MathWorld: Nexus number.
- Eric Weisstein, Link to section of MathWorld: Finite Differences.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A101095 for other sequences related to MagicNKZ.
-
m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(x^4+26*x^3+66*x^2+26*x+1)/(1-x)^3)); // G. C. Greubel, Dec 01 2018
-
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 3, 3}, {k, 0, 34}]
CoefficientList[Series[(-z^4-26z^3-66z^2-26z-1)/(z-1)^3, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
Join[{1,29},Differences[Range[0,40]^5,3]] (* or *) LinearRecurrence[{3,-3,1},{1,29,150,390,750},40] (* Harvey P. Dale, Feb 02 2017 *)
-
a(n)=if(n>2,60*n^2-180*n+150,28*n-27) \\ Charles R Greathouse IV, Oct 11 2015
-
[sum([(-1)^j*binomial(3, j)*(k-j+1)^5 for j in range(min(k+2,4))]) for k in range(40)] # Danny Rorabaugh, Apr 27 2015
MagicNKZ material edited and SeriesAtLevelR material removed by
Danny Rorabaugh, Apr 27 2015
A300656
Triangle read by rows: T(n,k) = 30*k^2*(n-k)^2 + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 31, 1, 1, 121, 121, 1, 1, 271, 481, 271, 1, 1, 481, 1081, 1081, 481, 1, 1, 751, 1921, 2431, 1921, 751, 1, 1, 1081, 3001, 4321, 4321, 3001, 1081, 1, 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1, 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10
--------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 31, 1;
n=3: 1, 121, 121, 1;
n=4: 1, 271, 481, 271, 1;
n=5: 1, 481, 1081, 1081, 481, 1;
n=6: 1, 751, 1921, 2431, 1921, 751, 1;
n=7: 1, 1081, 3001, 4321, 4321, 3001, 1081, 1;
n=8: 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1;
n=9: 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1;
n=10: 1, 2431, 7681, 13231, 17281, 18751, 17281, 13231, 7681, 2431, 1;
Various cases of L(m, n, k):
A287326(m=1), This sequence (m=2),
A300785(m=3). See comments for L(m, n, k).
Row sums give the nonzero terms of
A002561.
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A302971,
A304042,
A002561,
A258807,
A158558,
A094053,
A024003,
A316349.
-
T:=Flat(List([0..9],n->List([0..n],k->30*k^2*(n-k)^2+1))); # Muniru A Asiru, Oct 24 2018
-
[[30*k^2*(n-k)^2+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Dec 14 2018
-
a:=(n,k)->30*k^2*(n-k)^2+1: seq(seq(a(n,k),k=0..n),n=0..9); # Muniru A Asiru, Oct 24 2018
-
T[n_, k_] := 30 k^2 (n - k)^2 + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Apr 12 2020 *)
f[n_]:=Table[SeriesCoefficient[(1 + 26 y + 336 y^2 + 326 y^3 + 31 y^4 + x^2 (1 + 116 y + 486 y^2 + 116 y^3 + y^4) + x (-2 - 82 y - 882 y^2 - 502 y^3 + 28 y^4))/((-1 + x)^3 (-1 + y)^5), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11, 0]] (* Stefano Spezia, Oct 30 2018 *)
-
t(n, k) = 30*k^2*(n-k)^2+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[30*k^2*(n-k)^2+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A300785
Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 127, 1, 1, 1093, 1093, 1, 1, 3739, 8905, 3739, 1, 1, 8905, 30157, 30157, 8905, 1, 1, 17431, 71569, 101935, 71569, 17431, 1, 1, 30157, 139861, 241753, 241753, 139861, 30157, 1, 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1, 1, 71569, 383965, 816229, 1119721, 1119721, 816229, 383965, 71569, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
--------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 127, 1;
n=3: 1, 1093, 1093, 1;
n=4: 1, 3739, 8905, 3739, 1;
n=5: 1, 8905, 30157, 30157, 8905, 1;
n=6: 1, 17431, 71569, 101935, 71569, 17431, 1;
n=7: 1, 30157, 139861, 241753, 241753, 139861, 30157, 1;
n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1;
Various cases of L(m, n, k):
A287326 (m=1),
A300656 (m=2), This sequence (m=3). See comments for L(m, n, k).
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A300656,
A302971,
A304042,
A001015,
A094053,
A258808,
A024005,
A316387.
-
T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # G. C. Greubel, Dec 14 2018
-
/* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 21 2018
-
T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Dec 14 2018
-
T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From Kolosov Petro, Apr 12 2020 *)
-
t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A101098
a(1)=1; thereafter, a(n+1) = 20*n^3 + 10*n.
Original entry on oeis.org
1, 30, 180, 570, 1320, 2550, 4380, 6930, 10320, 14670, 20100, 26730, 34680, 44070, 55020, 67650, 82080, 98430, 116820, 137370, 160200, 185430, 213180, 243570, 276720, 312750, 351780, 393930, 439320, 488070, 540300, 596130, 655680, 719070, 786420, 857850
Offset: 1
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- O. Bagdasar, On some functions involving the lcm and gcd of integer tuples, Scientific Publications of the State University of Novi Pazar, Appl. Maths. Inform. and Mech., Vol. 6, 2 (2014), 91--100.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
Concatenation([1],List([1..35],n->20*n^3+10*n)); # Muniru A Asiru, Dec 02 2018
-
[n le 1 select 1 else 10*(n - 1)*(2*(n - 1)^2 + 1): n in [1..50]]; // G. C. Greubel, Dec 01 2018
-
a:=`if`(n=1,1,20*n^3+10*n): 1,seq(a(n),n=1..35); # Muniru A Asiru, Dec 02 2018
-
Table[If[n == 1, 1, 10*(n - 1)*(2*(n - 1)^2 + 1)], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)(* modified by G. C. Greubel, Dec 01 2018 *)
-
my(x='x+O('x^50)); Vec(x + 30*x^2*(1+x)^2/(1-x)^4) \\ G. C. Greubel, Dec 01 2018
-
s=(x + 30*x^2*(1+x)^2/(1-x)^4).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 01 2018
A254871
Seventh partial sums of fifth powers (A000584).
Original entry on oeis.org
1, 39, 495, 3705, 19995, 85917, 311493, 989235, 2823990, 7383610, 17931498, 40889862, 88304970, 181852230, 359140470, 683363994, 1257722271, 2246496825, 3905261425, 6623425575, 10983195405, 17840105595, 28431558675, 44521334325, 68589834300, 104081944356
Offset: 1
Second differences: 30, 180, 570, 1320, 2550, ... (A068236)
First differences: 1, 31, 211, 781, 2101, 4651, ... (A022521)
------------------------------------------------------------------------
The fifth powers: 1, 32, 243, 1024, 3125, 7776, ... (A000584)
------------------------------------------------------------------------
First partial sums: 1, 33, 276, 1300, 4425, 12201, ... (A000539)
Second partial sums: 1, 34, 310, 1610, 6035, 18236, ... (A101092)
Third partial sums: 1, 35, 345, 1955, 7990, 26226, ... (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644)
Fifth partial sums: 1, 37, 418, 2754, 13080, 49632, ... (A254682)
Sixth partial sums: 1, 38, 456, 3210, 16290, 65922, ... (A254471)
Seventh partial sums: 1, 39, 495, 3705, 19995, 85917, ... (this sequence)
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A000539,
A000584,
A022521,
A101092,
A101099,
A254471,
A254644,
A254682,
A254869,
A254870,
A254872.
-
[n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(-21+49*n +56*n^2+14*n^3+n^4)/3991680: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
-
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) ((-21 + 49 n + 56 n^2 + 14 n^3 + n^4)/3991680), {n, 23}] (* or *)
CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^13, {x, 0, 22}], x]
-
vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680) \\ Derek Orr, Feb 19 2015
A069473
First differences of (n+1)^6-n^6 (A022522).
Original entry on oeis.org
62, 602, 2702, 8162, 19502, 39962, 73502, 124802, 199262, 303002, 442862, 626402, 861902, 1158362, 1525502, 1973762, 2514302, 3159002, 3920462, 4812002, 5847662, 7042202, 8411102, 9970562, 11737502, 13729562, 15965102, 18463202
Offset: 0
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Mar 26 2002
-
[30*n^4+120*n^3+210*n^2+180*n+62: n in [0..30]]; // Bruno Berselli, Feb 25 2015
-
Differences[Table[(n + 1)^6 - n^6, {n, 0, 30}]] (* Harvey P. Dale, Dec 27 2011 *)
Offset changed from 1 to 0 and added a(0)=62 by
Bruno Berselli, Feb 25 2015
A069477
a(n) = 60*n^2 + 180*n + 150.
Original entry on oeis.org
390, 750, 1230, 1830, 2550, 3390, 4350, 5430, 6630, 7950, 9390, 10950, 12630, 14430, 16350, 18390, 20550, 22830, 25230, 27750, 30390, 33150, 36030, 39030, 42150, 45390, 48750, 52230, 55830, 59550, 63390, 67350, 71430, 75630, 79950, 84390, 88950, 93630, 98430, 103350
Offset: 1
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Apr 11 2002
-
[30*(2*n^2 + 6*n + 5): n in [1..40]]; // Vincenzo Librandi, Nov 23 2011
-
Table[30 (2 n^2 + 6 n + 5), {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
LinearRecurrence[{3,-3,1},{390,750,1230},40] (* Harvey P. Dale, Apr 06 2012 *)
-
a(n)=60*n^2+180*n+150 \\ Charles R Greathouse IV, Nov 23 2011
A069478
First differences of A069477, successive differences of (n+1)^5 - n^5.
Original entry on oeis.org
360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Apr 11 2002
A353890
a(n) is the period of the binary sequence {b(m)} defined by b(m) = 1 if (m+1)^n - m^n and (m+2)^n - 2*(m+1)^n + m^n are coprime, 0 otherwise.
Original entry on oeis.org
1, 1, 5, 11, 91, 1247, 3485, 263017, 852841, 1241058127, 74966255, 243641132605417, 181556731572385303, 718802057694183783881, 6582662048285, 943422576750791493013356207217, 487331778345355477261, 607088607861933740557075591887834842297
Offset: 2
For n=2 and n=3, the first and second differences are coprime for all m. Each of their sequences {b(m)} consist only of 1's, which can be described trivially as [1] with a period of 1, so a(2) = a(3) = 1.
For n > 3, the first and second differences are coprime for some m values, but not for all. Each repeating periodic sequence {b(m)} begins at m=1, and can be used to predict what b(m) will be at any higher m value for that power n.
n=4 has the 5-term repeating sequence, beginning at m=1:
[0 0 1 1 1], so a(4) = 5.
The sequence is repeating, so for example, f(41)..f(45) is also [0 0 1 1 1].
n=5 has the 11-term repeating sequence
[1 1 0 1 1 0 1 1 1 1 1]
so a(5) = 11.
n=6 has the 91-term repeating sequence
[0 0 0 0 0 0 1 0 0 0 0 1 1
1 0 0 0 0 0 1 1 0 0 0 0 1
1 1 0 0 0 0 1 1 1 0 0 0 0
1 1 1 0 0 0 0 1 1 1 0 0 0
0 1 1 1 0 0 0 0 1 1 1 0 0
0 0 1 1 0 0 0 0 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1]
so a(6) = 91.
The period for higher n values has yet to be found. If they exist, it seems they would be quite large given the large expansion from 5, 11, to 91.
Example: the 233rd term in the sequence of values for n=6 is calculated by using m=233 and n=6. Define the first difference for the 233rd term as 234^6 - 233^6 = 4164782373647. The second difference for the 233rd term is 235^6 - 2*234^6 + 233^6 = 89948228762. The terms 4164782373647 and 89948228762 share a common factor, so the 233rd term of the sequence for 6th powered terms is denoted 0 (not coprime). Because the 6th powered terms repeat their tendency of being coprime or not every 91 terms, we could instead look at 233 mod 91 = 51, and from the table for n=6 above, the 51st term is 0.
Cf.
A005408,
A007395,
A003215,
A008588,
A005917,
A005914,
A022521,
A068236,
A022522,
A069473,
A069925,
A001045,
A002587.
Showing 1-9 of 9 results.
Comments