A068875 Expansion of (1 + x*C)*C, where C = (1 - (1 - 4*x)^(1/2))/(2*x) is the g.f. for Catalan numbers, A000108.
1, 2, 4, 10, 28, 84, 264, 858, 2860, 9724, 33592, 117572, 416024, 1485800, 5348880, 19389690, 70715340, 259289580, 955277400, 3534526380, 13128240840, 48932534040, 182965127280, 686119227300, 2579808294648, 9723892802904, 36734706144304, 139067101832008
Offset: 0
Examples
G.f. = 1 + 2*x + 4*x^2 + 10*x^3 + 28*x^4 + 84*x^5 + 264*x^6 + 858*x^7 + ... For example, the canonical basis of the Temperley-Lieb algebra of order 3 is {{{-3, 1}, {-2, -1}, {2, 3}}, {{-3, 3}, {-2, 2}, {-1, 1}}, {{-3, 3}, {-2, -1}, {1, 2}}, {{-3, -2}, {-1, 1}, {2, 3}}, {{-3, -2}, {-1, 3}, {1, 2}}}, and we see that the total number of entries of absolute value 1 that appear among the partitions in this basis is a(3) = 10.
References
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, p. 225.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Alexander Burstein and Louis W. Shapiro, Pseudo-involutions in the Riordan group, arXiv:2112.11595 [math.CO], 2021.
- S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995), 743-751. [Annotated scanned copy]
- S. B. Ekhad and M. Yang, Proofs of Linear Recurrences of Coefficients of Certain Algebraic Formal Power Series Conjectured in the On-Line Encyclopedia Of Integer Sequences, 2017.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Crossrefs
Programs
-
Magma
[1] cat [2*Binomial( 2*n, n)/(n+1): n in [1..30]]; // Vincenzo Librandi, Oct 17 2017
-
Maple
Z:=(1-sqrt(1-4*x))/2/x: G:=(2-(1+x)*Z)/Z: Gser:=series(-G, x=0, 30): (1,seq(coeff(Gser, x, n), n=2..26)); # Zerinvary Lajos, Dec 23 2006 Z:=-(1-z-sqrt(1-z))/sqrt(1-z): Zser:=series(Z, z=0, 32): (1,seq(coeff(Zser*4^n, z, n), n=2..26)); # Zerinvary Lajos, Jan 01 2007 A068875List := proc(m) local A, P, n; A := [1, 2]; P := [2]; for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]); A := [op(A), P[-1]] od; A end: A068875List(26); # Peter Luschny, Mar 24 2022
-
Mathematica
nn=30;t=(1-(1-4x )^(1/2))/(2x);Prepend[Table[Coefficient[Series[1+x (y t -y+1)^2,{x,0,nn}],x ^n y],{n,2,nn}],1] (* Geoffrey Critzer, Jan 05 2013 *) a[ n_] := If[ n < 1, Boole[ n == 0], 2 Binomial[ 2 n, n]/(n + 1)]; (* Michael Somos, Jun 18 2014 *) a[ n_] := SeriesCoefficient[ -1 + 4 / (1 + Sqrt[ 1 - 4 x]), {x, 0, n}]; (* Michael Somos, Jun 18 2014 *) Table[If[n==0, 1, 2 CatalanNumber[n]], {n,0,25}] (* Peter Luschny, Feb 27 2017 *)
-
PARI
{a(n) = if( n<1, n==0, 2 * binomial( 2*n, n) / (n + 1))}; /* Michael Somos, Aug 17 2005 */
-
PARI
{a(n) = if( n<0, 0, polcoeff( -1 + 4 / (1 + sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Aug 17 2005 */
Formula
Apart from initial term, twice Catalan numbers.
G.f.: (1 - x - sqrt(1 - 4*x)) / x. - Michael Somos, Apr 13 2012
From Paul Barry, Nov 14 2004: (Start)
G.f.: (1 + x*c(x))/(1 - x*c(x)), where c(x) is the g.f. of A000108.
a(n) = C(n)*(2-0^n), where C(n) = A000108(n).
a(n) = Sum_{j=0..n} Sum_{k=0..n} binomial(2*n, n-k) *((2*k + 1)/(n + k + 1)) * binomial(k, j) * (-1)^(j-k) * (2 - 0^j). (End)
Assuming offset 1, then series reversion of g.f. A(x) is -A(-x). - Michael Somos, Aug 17 2005
Assuming offset 2, then A(x) satisfies A(x - x^2) = x^2 - x^4 and so A(x) = C(x)^2 - C(x)^4, A(A(x)) = C(x)^4 - C(x)^8, A(A(A(x))) = C(x)^8 - C(x)^16, etc., where C(x) = (1-sqrt(1-4*x))/2 = x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + ... . - Paul D. Hanna, May 16 2008
Apart from initial term, INVERTi transform of A000984(n+1) = binomial(2*n+2,n+1), also, for n >= 1, a(n) = (1/Pi)*Integral_{x=0..4} x^(n-1)*sqrt(x*(4 - x)). - Groux Roland, Mar 15 2011
D-finite with recurrence (n+2)*a(n) - 2*(2*n+1)*a(n-1) = 0, n > 1. - R. J. Mathar, Nov 14 2011
For n > 0, a(n) = C(2*n+2, n+1) mod 4*C(2*n, n - 1). - Robert G. Wilson v, May 02 2012
For n > 0, a(n) = 2^(2*n + 1) * Gamma(n + 1/2)/(sqrt(Pi) * (n + 1)!). - Vaclav Kotesovec, Sep 16 2013
G.f.: 1 + 2*x/(Q(0) - x), where Q(k) = 2*x + (k + 1)/(2*k + 1) - 2*x*(k + 1)/(2*k + 1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
G.f.: 3 - 4*x - 2*S(0), where S(k) = 2*k + 1 - x*(2*k + 3)/(1 - x*(2*k + 1)/S(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 23 2013
0 = a(n)*(16*a(n+1) - 10*a(n+2)) + a(n+1)*(2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jun 18 2014
If A(x)^t = 1 + 2*t*x + Sum_{n >= 2} t*P(n,t)*x^n, then we conjecture that all the zeros of the polynomial P(n,t) lie on the vertical line Re(t) = -n/2 in the complex plane. - Peter Bala, Oct 05 2015
a(n+1) = a(n) + (1/2)*(Sum_{k=0..n} a(k)*a(n-k)) if n > 0. - Michael Somos, Apr 22 2022
b(n) = a(n+1) - a(n) for all n in Z if b(0) = 2, a(-1) = -1, a(0) = 0, a(-1) = 3, a(-2) = -1 where b = A071721. - Michael Somos, Apr 23 2022
Comments