cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A106520 a(n) = A068875(n-1) - A003239(n).

Original entry on oeis.org

1, 0, 0, 0, 2, 4, 18, 48, 156, 472, 1526, 4852, 16000, 52940, 178276, 605520, 2079862, 7201084, 25138878, 88358520, 312576996, 1112087012, 3977502766, 14294093652, 51596165872, 186997738504, 680272334202, 2483340387644, 9094756956908
Offset: 1

Views

Author

F. Chapoton, May 30 2005

Keywords

Comments

This is the multiplicity of the trivial module in a sequence of modules of dimension (2*n-2)!/n! over the symmetric groups S_n, induced from modules of dimension (2*n-2)!/(n!*(n-1)!) (Catalan) over the cyclic groups C_n.

Crossrefs

Programs

  • Magma
    A106520:= func< n | 2*Catalan(n-1) - (1/(2*n))*(&+[Round(Gamma(2*n/d +1)/Gamma(n/d +1)^2)*EulerPhi(d): d in Divisors(n)]) >;
    [A106520(n): n in [1..40]]; // G. C. Greubel, Aug 06 2021
    
  • Maple
    with(numtheory);
    a:= proc(n) (2/n)*binomial(2*n-2, n-1) - (1/(2*n))*add(phi(d)*binomial(2*n/d, n/d), d = divisors(n)) end:
    seq(a(n), n = 1..40);
  • Mathematica
    a[n_]:= 2/n*Binomial[2*n-2, n-1] - 1/(2*n)*DivisorSum[n, EulerPhi[#]* Binomial[2*n/#, n/#]&]; Table[a[n], {n, 40}] (* Jean-François Alcover, Feb 20 2017 *)
  • PARI
    a(n) = (2/n) * binomial(2*n-2, n-1) - 1/(2*n) * sumdiv(n, d, eulerphi(d) * binomial(2*n/d, n/d)); \\ Michel Marcus, Aug 08 2021
  • Sage
    def a(n): return 2*catalan_number(n-1) - (1/(2*n))*sum(euler_phi(n/d)*binomial(2*d, d) for d in divisors(n))
    [a(n) for n in (1..40)] # G. C. Greubel, Aug 06 2021
    

Formula

a(n) = (2/n) * binomial(2*n-2, n-1) - 1/(2*n) * Sum_{d divides n} phi(d) * binomial(2*n/d, n/d).
a(n) = 2*A000108(n-1) - (1/(2*n))*Sum_{d divides n} (n/d + 1)*A000108(n/d) * A000010(d). - G. C. Greubel, Aug 06 2021

Extensions

Terms a(1) to a(4) prepended by G. C. Greubel, Aug 06 2021

A000108 Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!).

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304
Offset: 0

Views

Author

Keywords

Comments

These were formerly sometimes called Segner numbers.
A very large number of combinatorial interpretations are known - see references, esp. R. P. Stanley, "Catalan Numbers", Cambridge University Press, 2015. This is probably the longest entry in the OEIS, and rightly so.
The solution to Schröder's first problem: number of ways to insert n pairs of parentheses in a word of n+1 letters. E.g., for n=2 there are 2 ways: ((ab)c) or (a(bc)); for n=3 there are 5 ways: ((ab)(cd)), (((ab)c)d), ((a(bc))d), (a((bc)d)), (a(b(cd))).
Consider all the binomial(2n,n) paths on squared paper that (i) start at (0, 0), (ii) end at (2n, 0) and (iii) at each step, either make a (+1,+1) step or a (+1,-1) step. Then the number of such paths that never go below the x-axis (Dyck paths) is C(n). [Chung-Feller]
Number of noncrossing partitions of the n-set. For example, of the 15 set partitions of the 4-set, only [{13},{24}] is crossing, so there are a(4)=14 noncrossing partitions of 4 elements. - Joerg Arndt, Jul 11 2011
Noncrossing partitions are partitions of genus 0. - Robert Coquereaux, Feb 13 2024
a(n-1) is the number of ways of expressing an n-cycle (123...n) in the symmetric group S_n as a product of n-1 transpositions (u_1,v_1)*(u_2,v_2)*...*(u_{n-1},v_{n-1}) where u_iA000272. - Joerg Arndt and Greg Stevenson, Jul 11 2011
a(n) is the number of ordered rooted trees with n nodes, not including the root. See the Conway-Guy reference where these rooted ordered trees are called plane bushes. See also the Bergeron et al. reference, Example 4, p. 167. - Wolfdieter Lang, Aug 07 2007
As shown in the paper from Beineke and Pippert (1971), a(n-2)=D(n) is the number of labeled dissections of a disk, related to the number R(n)=A001761(n-2) of labeled planar 2-trees having n vertices and rooted at a given exterior edge, by the formula D(n)=R(n)/(n-2)!. - M. F. Hasler, Feb 22 2012
Shifts one place left when convolved with itself.
For n >= 1, a(n) is also the number of rooted bicolored unicellular maps of genus 0 on n edges. - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 15 2001
Number of ways of joining 2n points on a circle to form n nonintersecting chords. (If no such restriction imposed, then the number of ways of forming n chords is given by (2n-1)!! = (2n)!/(n!*2^n) = A001147(n).)
Arises in Schubert calculus - see Sottile reference.
Inverse Euler transform of sequence is A022553.
With interpolated zeros, the inverse binomial transform of the Motzkin numbers A001006. - Paul Barry, Jul 18 2003
The Hankel transforms of this sequence or of this sequence with the first term omitted give A000012 = 1, 1, 1, 1, 1, 1, ...; example: Det([1, 1, 2, 5; 1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132]) = 1 and Det([1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429]) = 1. - Philippe Deléham, Mar 04 2004
a(n) equals the sum of squares of terms in row n of triangle A053121, which is formed from successive self-convolutions of the Catalan sequence. - Paul D. Hanna, Apr 23 2005
Also coefficients of the Mandelbrot polynomial M iterated an infinite number of times. Examples: M(0) = 0 = 0*c^0 = [0], M(1) = c = c^1 + 0*c^0 = [1 0], M(2) = c^2 + c = c^2 + c^1 + 0*c^0 = [1 1 0], M(3) = (c^2 + c)^2 + c = [0 1 1 2 1], ... ... M(5) = [0 1 1 2 5 14 26 44 69 94 114 116 94 60 28 8 1], ... - Donald D. Cross (cosinekitty(AT)hotmail.com), Feb 04 2005
The multiplicity with which a prime p divides C_n can be determined by first expressing n+1 in base p. For p=2, the multiplicity is the number of 1 digits minus 1. For p an odd prime, count all digits greater than (p+1)/2; also count digits equal to (p+1)/2 unless final; and count digits equal to (p-1)/2 if not final and the next digit is counted. For example, n=62, n+1 = 223_5, so C_62 is not divisible by 5. n=63, n+1 = 224_5, so 5^3 | C_63. - Franklin T. Adams-Watters, Feb 08 2006
Koshy and Salmassi give an elementary proof that the only prime Catalan numbers are a(2) = 2 and a(3) = 5. Is the only semiprime Catalan number a(4) = 14? - Jonathan Vos Post, Mar 06 2006
The answer is yes. Using the formula C_n = binomial(2n,n)/(n+1), it is immediately clear that C_n can have no prime factor greater than 2n. For n >= 7, C_n > (2n)^2, so it cannot be a semiprime. Given that the Catalan numbers grow exponentially, the above consideration implies that the number of prime divisors of C_n, counted with multiplicity, must grow without limit. The number of distinct prime divisors must also grow without limit, but this is more difficult. Any prime between n+1 and 2n (exclusive) must divide C_n. That the number of such primes grows without limit follows from the prime number theorem. - Franklin T. Adams-Watters, Apr 14 2006
The number of ways to place n indistinguishable balls in n numbered boxes B1,...,Bn such that at most a total of k balls are placed in boxes B1,...,Bk for k=1,...,n. For example, a(3)=5 since there are 5 ways to distribute 3 balls among 3 boxes such that (i) box 1 gets at most 1 ball and (ii) box 1 and box 2 together get at most 2 balls:(O)(O)(O), (O)()(OO), ()(OO)(O), ()(O)(OO), ()()(OOO). - Dennis P. Walsh, Dec 04 2006
a(n) is also the order of the semigroup of order-decreasing and order-preserving full transformations (of an n-element chain) - now known as the Catalan monoid. - Abdullahi Umar, Aug 25 2008
a(n) is the number of trivial representations in the direct product of 2n spinor (the smallest) representations of the group SU(2) (A(1)). - Rutger Boels (boels(AT)nbi.dk), Aug 26 2008
The invert transform appears to converge to the Catalan numbers when applied infinitely many times to any starting sequence. - Mats Granvik, Gary W. Adamson and Roger L. Bagula, Sep 09 2008, Sep 12 2008
Limit_{n->oo} a(n)/a(n-1) = 4. - Francesco Antoni (francesco_antoni(AT)yahoo.com), Nov 24 2008
Starting with offset 1 = row sums of triangle A154559. - Gary W. Adamson, Jan 11 2009
C(n) is the degree of the Grassmannian G(1,n+1): the set of lines in (n+1)-dimensional projective space, or the set of planes through the origin in (n+2)-dimensional affine space. The Grassmannian is considered a subset of N-dimensional projective space, N = binomial(n+2,2) - 1. If we choose 2n general (n-1)-planes in projective (n+1)-space, then there are C(n) lines that meet all of them. - Benji Fisher (benji(AT)FisherFam.org), Mar 05 2009
Starting with offset 1 = A068875: (1, 2, 4, 10, 18, 84, ...) convolved with Fine numbers, A000957: (1, 0, 1, 2, 6, 18, ...). a(6) = 132 = (1, 2, 4, 10, 28, 84) dot (18, 6, 2, 1, 0, 1) = (18 + 12 + 8 + 10 + 0 + 84) = 132. - Gary W. Adamson, May 01 2009
Convolved with A032443: (1, 3, 11, 42, 163, ...) = powers of 4, A000302: (1, 4, 16, ...). - Gary W. Adamson, May 15 2009
Sum_{k>=1} C(k-1)/2^(2k-1) = 1. The k-th term in the summation is the probability that a random walk on the integers (beginning at the origin) will arrive at positive one (for the first time) in exactly (2k-1) steps. - Geoffrey Critzer, Sep 12 2009
C(p+q)-C(p)*C(q) = Sum_{i=0..p-1, j=0..q-1} C(i)*C(j)*C(p+q-i-j-1). - Groux Roland, Nov 13 2009
Leonhard Euler used the formula C(n) = Product_{i=3..n} (4*i-10)/(i-1) in his 'Betrachtungen, auf wie vielerley Arten ein gegebenes polygonum durch Diagonallinien in triangula zerschnitten werden könne' and computes by recursion C(n+2) for n = 1..8. (Berlin, 4th September 1751, in a letter to Goldbach.) - Peter Luschny, Mar 13 2010
Let A179277 = A(x). Then C(x) is satisfied by A(x)/A(x^2). - Gary W. Adamson, Jul 07 2010
a(n) is also the number of quivers in the mutation class of type B_n or of type C_n. - Christian Stump, Nov 02 2010
From Matthew Vandermast, Nov 22 2010: (Start)
Consider a set of A000217(n) balls of n colors in which, for each integer k = 1 to n, exactly one color appears in the set a total of k times. (Each ball has exactly one color and is indistinguishable from other balls of the same color.) a(n+1) equals the number of ways to choose 0 or more balls of each color while satisfying the following conditions: 1. No two colors are chosen the same positive number of times. 2. For any two colors (c, d) that are chosen at least once, color c is chosen more times than color d iff color c appears more times in the original set than color d.
If the second requirement is lifted, the number of acceptable ways equals A000110(n+1). See related comments for A016098, A085082. (End)
Deutsch and Sagan prove the Catalan number C_n is odd if and only if n = 2^a - 1 for some nonnegative integer a. Lin proves for every odd Catalan number C_n, we have C_n == 1 (mod 4). - Jonathan Vos Post, Dec 09 2010
a(n) is the number of functions f:{1,2,...,n}->{1,2,...,n} such that f(1)=1 and for all n >= 1 f(n+1) <= f(n)+1. For a nice bijection between this set of functions and the set of length 2n Dyck words, see page 333 of the Fxtbook (see link below). - Geoffrey Critzer, Dec 16 2010
Postnikov (2005) defines "generalized Catalan numbers" associated with buildings (e.g., Catalan numbers of Type B, see A000984). - N. J. A. Sloane, Dec 10 2011
Number of permutations in S(n) for which length equals depth. - Bridget Tenner, Feb 22 2012
a(n) is also the number of standard Young tableau of shape (n,n). - Thotsaporn Thanatipanonda, Feb 25 2012
a(n) is the number of binary sequences of length 2n+1 in which the number of ones first exceed the number of zeros at entry 2n+1. See the example below in the example section. - Dennis P. Walsh, Apr 11 2012
Number of binary necklaces of length 2*n+1 containing n 1's (or, by symmetry, 0's). All these are Lyndon words and their representatives (as cyclic maxima) are the binary Dyck words. - Joerg Arndt, Nov 12 2012
Number of sequences consisting of n 'x' letters and n 'y' letters such that (counting from the left) the 'x' count >= 'y' count. For example, for n=3 we have xxxyyy, xxyxyy, xxyyxy, xyxxyy and xyxyxy. - Jon Perry, Nov 16 2012
a(n) is the number of Motzkin paths of length n-1 in which the (1,0)-steps come in 2 colors. Example: a(4)=14 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 8 paths of shape HHH, 2 paths of shape UHD, 2 paths of shape UDH, and 2 paths of shape HUD. - José Luis Ramírez Ramírez, Jan 16 2013
If p is an odd prime, then (-1)^((p-1)/2)*a((p-1)/2) mod p = 2. - Gary Detlefs, Feb 20 2013
Conjecture: For any positive integer n, the polynomial Sum_{k=0..n} a(k)*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013
a(n) is the size of the Jones monoid on 2n points (cf. A225798). - James Mitchell, Jul 28 2013
For 0 < p < 1, define f(p) = Sum_{n>=0} a(n)*(p*(1-p))^n, then f(p) = min{1/p, 1/(1-p)}, so f(p) reaches its maximum value 2 at p = 0.5, and p*f(p) is constant 1 for 0.5 <= p < 1. - Bob Selcoe, Nov 16 2013 [Corrected by Jianing Song, May 21 2021]
No a(n) has the form x^m with m > 1 and x > 1. - Zhi-Wei Sun, Dec 02 2013
From Alexander Adamchuk, Dec 27 2013: (Start)
Prime p divides a((p+1)/2) for p > 3. See A120303(n) = Largest prime factor of Catalan number.
Reciprocal Catalan Constant C = 1 + 4*sqrt(3)*Pi/27 = 1.80613.. = A121839.
Log(Phi) = (125*C - 55) / (24*sqrt(5)), where C = Sum_{k>=1} (-1)^(k+1)*1/a(k). See A002390 = Decimal expansion of natural logarithm of golden ratio.
3-d analog of the Catalan numbers: (3n)!/(n!(n+1)!(n+2)!) = A161581(n) = A006480(n) / ((n+1)^2*(n+2)), where A006480(n) = (3n)!/(n!)^3 De Bruijn's S(3,n). (End)
For a relation to the inviscid Burgers's, or Hopf, equation, see A001764. - Tom Copeland, Feb 15 2014
From Fung Lam, May 01 2014: (Start)
One class of generalized Catalan numbers can be defined by g.f. A(x) = (1-sqrt(1-q*4*x*(1-(q-1)*x)))/(2*q*x) with nonzero parameter q. Recurrence: (n+3)*a(n+2) -2*q*(2*n+3)*a(n+1) +4*q*(q-1)*n*a(n) = 0 with a(0)=1, a(1)=1.
Asymptotic approximation for q >= 1: a(n) ~ (2*q+2*sqrt(q))^n*sqrt(2*q*(1+sqrt(q))) /sqrt(4*q^2*Pi*n^3).
For q <= -1, the g.f. defines signed sequences with asymptotic approximation: a(n) ~ Re(sqrt(2*q*(1+sqrt(q)))*(2*q+2*sqrt(q))^n) / sqrt(q^2*Pi*n^3), where Re denotes the real part. Due to Stokes' phenomena, accuracy of the asymptotic approximation deteriorates at/near certain values of n.
Special cases are A000108 (q=1), A068764 to A068772 (q=2 to 10), A240880 (q=-3).
(End)
Number of sequences [s(0), s(1), ..., s(n)] with s(n)=0, Sum_{j=0..n} s(j) = n, and Sum_{j=0..k} s(j)-1 >= 0 for k < n-1 (and necessarily Sum_{j=0..n-1} s(j)-1 = 0). These are the branching sequences of the (ordered) trees with n non-root nodes, see example. - Joerg Arndt, Jun 30 2014
Number of stack-sortable permutations of [n], these are the 231-avoiding permutations; see the Bousquet-Mélou reference. - Joerg Arndt, Jul 01 2014
a(n) is the number of increasing strict binary trees with 2n-1 nodes that avoid 132. For more information about increasing strict binary trees with an associated permutation, see A245894. - Manda Riehl, Aug 07 2014
In a one-dimensional medium with elastic scattering (zig-zag walk), first recurrence after 2n+1 scattering events has the probability C(n)/2^(2n+1). - Joachim Wuttke, Sep 11 2014
The o.g.f. C(x) = (1 - sqrt(1-4x))/2, for the Catalan numbers, with comp. inverse Cinv(x) = x*(1-x) and the functions P(x) = x / (1 + t*x) and its inverse Pinv(x,t) = -P(-x,t) = x / (1 - t*x) form a group under composition that generates or interpolates among many classic arrays, such as the Motzkin (Riordan, A005043), Fibonacci (A000045), and Fine (A000957) numbers and polynomials (A030528), and enumerating arrays for Motzkin, Dyck, and Łukasiewicz lattice paths and different types of trees and non-crossing partitions (A091867, connected to sums of the refined Narayana numbers A134264). - Tom Copeland, Nov 04 2014
Conjecture: All the rational numbers Sum_{i=j..k} 1/a(i) with 0 < min{2,k} <= j <= k have pairwise distinct fractional parts. - Zhi-Wei Sun, Sep 24 2015
The Catalan number series A000108(n+3), offset n=0, gives Hankel transform revealing the square pyramidal numbers starting at 5, A000330(n+2), offset n=0 (empirical observation). - Tony Foster III, Sep 05 2016
Hankel transforms of the Catalan numbers with the first 2, 4, and 5 terms omitted give A001477, A006858, and A091962, respectively, without the first 2 terms in all cases. More generally, the Hankel transform of the Catalan numbers with the first k terms omitted is H_k(n) = Product_{j=1..k-1} Product_{i=1..j} (2*n+j+i)/(j+i) [see Cigler (2011), Eq. (1.14) and references therein]; together they form the array A078920/A123352/A368025. - Andrey Zabolotskiy, Oct 13 2016
Presumably this satisfies Benford's law, although the results in Hürlimann (2009) do not make this clear. See S. J. Miller, ed., 2015, p. 5. - N. J. A. Sloane, Feb 09 2017
Coefficients of the generating series associated to the Magmatic and Dendriform operadic algebras. Cf. p. 422 and 435 of the Loday et al. paper. - Tom Copeland, Jul 08 2018
Let M_n be the n X n matrix with M_n(i,j) = binomial(i+j-1,2j-2); then det(M_n) = a(n). - Tony Foster III, Aug 30 2018
Also the number of Catalan trees, or planted plane trees (Bona, 2015, p. 299, Theorem 4.6.3). - N. J. A. Sloane, Dec 25 2018
Number of coalescent histories for a caterpillar species tree and a matching caterpillar gene tree with n+1 leaves (Rosenberg 2007, Corollary 3.5). - Noah A Rosenberg, Jan 28 2019
Finding solutions of eps*x^2+x-1 = 0 for eps small, that is, writing x = Sum_{n>=0} x_{n}*eps^n and expanding, one finds x = 1 - eps + 2*eps^2 - 5*eps^3 + 14*eps^3 - 42*eps^4 + ... with x_{n} = (-1)^n*C(n). Further, letting x = 1/y and expanding y about 0 to find large roots, that is, y = Sum_{n>=1} y_{n}*eps^n, one finds y = 0 - eps + eps^2 - 2*eps^3 + 5*eps^3 - ... with y_{n} = (-1)^n*C(n-1). - Derek Orr, Mar 15 2019
Permutations of length n that produce a bipartite permutation graph of order n [see Knuth (1973), Busch (2006), Golumbic and Trenk (2004)]. - Elise Anderson, R. M. Argus, Caitlin Owens, Tessa Stevens, Jun 27 2019
For n > 0, a random selection of n + 1 objects (the minimum number ensuring one pair by the pigeonhole principle) from n distinct pairs of indistinguishable objects contains only one pair with probability 2^(n-1)/a(n) = b(n-1)/A098597(n), where b is the 0-offset sequence with the terms of A120777 repeated (1,1,4,4,8,8,64,64,128,128,...). E.g., randomly selecting 6 socks from 5 pairs that are black, blue, brown, green, and white, results in only one pair of the same color with probability 2^(5-1)/a(5) = 16/42 = 8/21 = b(4)/A098597(5). - Rick L. Shepherd, Sep 02 2019
See Haran & Tabachnikov link for a video discussing Conway-Coxeter friezes. The Conway-Coxeter friezes with n nontrivial rows are generated by the counts of triangles at each vertex in the triangulations of regular n-gons, of which there are a(n). - Charles R Greathouse IV, Sep 28 2019
For connections to knot theory and scattering amplitudes from Feynman diagrams, see Broadhurst and Kreimer, and Todorov. Eqn. 6.12 on p. 130 of Bessis et al. becomes, after scaling, -12g * r_0(-y/(12g)) = (1-sqrt(1-4y))/2, the o.g.f. (expressed as a Taylor series in Eqn. 7.22 in 12gx) given for the Catalan numbers in Copeland's (Sep 30 2011) formula below. (See also Mizera p. 34, Balduf pp. 79-80, Keitel and Bartosch.) - Tom Copeland, Nov 17 2019
Number of permutations in S_n whose principal order ideals in the weak order are modular lattices. - Bridget Tenner, Jan 16 2020
Number of permutations in S_n whose principal order ideals in the weak order are distributive lattices. - Bridget Tenner, Jan 16 2020
Legendre gives the following formula for computing the square root modulo 2^m:
sqrt(1 + 8*a) mod 2^m = (1 + 4*a*Sum_{i=0..m-4} C(i)*(-2*a)^i) mod 2^m
as cited by L. D. Dickson, History of the Theory of Numbers, Vol. 1, 207-208. - Peter Schorn, Feb 11 2020
a(n) is the number of length n permutations sorted to the identity by a consecutive-132-avoiding stack followed by a classical-21-avoiding stack. - Kai Zheng, Aug 28 2020
Number of non-crossing partitions of a 2*n-set with n blocks of size 2. Also number of non-crossing partitions of a 2*n-set with n+1 blocks of size at most 3, and without cyclical adjacencies. The two partitions can be mapped by rotated Kreweras bijection. - Yuchun Ji, Jan 18 2021
Named by Riordan (1968, and earlier in Mathematical Reviews, 1948 and 1964) after the French and Belgian mathematician Eugène Charles Catalan (1814-1894) (see Pak, 2014). - Amiram Eldar, Apr 15 2021
For n >= 1, a(n-1) is the number of interpretations of x^n is an algebra where power-associativity is not assumed. For example, for n = 4 there are a(3) = 5 interpretations: x(x(xx)), x((xx)x), (xx)(xx), (x(xx))x, ((xx)x)x. See the link "Non-associate powers and a functional equation" from I. M. H. Etherington and the page "Nonassociative Product" from Eric Weisstein's World of Mathematics for detailed information. See also A001190 for the case where multiplication is commutative. - Jianing Song, Apr 29 2022
Number of states in the transition diagram associated with the Laplacian system over the complete graph K_N, corresponding to ordered initial conditions x_1 < x_2 < ... < x_N. - Andrea Arlette España, Nov 06 2022
a(n) is the number of 132-avoiding stabilized-interval-free permutations of size n+1. - Juan B. Gil, Jun 22 2023
Number of rooted polyominoes composed of n triangular cells of the hyperbolic regular tiling with Schläfli symbol {3,oo}. A rooted polyomino has one external edge identified, and chiral pairs are counted as two. A stereographic projection of the {3,oo} tiling on the Poincaré disk can be obtained via the Christensson link. - Robert A. Russell, Jan 27 2024
a(n) is the number of extremely lucky Stirling permutations of order n; i.e., the number of Stirling permutations of order n that have exactly n lucky cars. (see Colmenarejo et al. reference) - Bridget Tenner, Apr 16 2024

Examples

			From _Joerg Arndt_ and Greg Stevenson, Jul 11 2011: (Start)
The following products of 3 transpositions lead to a 4-cycle in S_4:
(1,2)*(1,3)*(1,4);
(1,2)*(1,4)*(3,4);
(1,3)*(1,4)*(2,3);
(1,4)*(2,3)*(2,4);
(1,4)*(2,4)*(3,4). (End)
G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + ...
For n=3, a(3)=5 since there are exactly 5 binary sequences of length 7 in which the number of ones first exceed the number of zeros at entry 7, namely, 0001111, 0010111, 0011011, 0100111, and 0101011. - _Dennis P. Walsh_, Apr 11 2012
From _Joerg Arndt_, Jun 30 2014: (Start)
The a(4) = 14 branching sequences of the (ordered) trees with 4 non-root nodes are (dots denote zeros):
01:  [ 1 1 1 1 . ]
02:  [ 1 1 2 . . ]
03:  [ 1 2 . 1 . ]
04:  [ 1 2 1 . . ]
05:  [ 1 3 . . . ]
06:  [ 2 . 1 1 . ]
07:  [ 2 . 2 . . ]
08:  [ 2 1 . 1 . ]
09:  [ 2 1 1 . . ]
10:  [ 2 2 . . . ]
11:  [ 3 . . 1 . ]
12:  [ 3 . 1 . . ]
13:  [ 3 1 . . . ]
14:  [ 4 . . . . ]
(End)
		

References

  • The large number of references and links demonstrates the ubiquity of the Catalan numbers.
  • R. Alter, Some remarks and results on Catalan numbers, pp. 109-132 in Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computer Science. Vol. 2, edited R. C. Mullin et al., 1971.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, many references.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 53.
  • J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, ch. 4, pp. 96-106.
  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see pp. 183, 196, etc.).
  • Michael Dairyko, Samantha Tyner, Lara Pudwell, and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
  • E. Deutsch, Dyck path enumeration, Discrete Math., 204, 167-202, 1999.
  • E. Deutsch and L. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31, 31-38, 2001.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, 207-208.
  • Tomislav Doslic and Darko Veljan, Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182-2212. MR2404544 (2009j:05019)
  • S. Dulucq and J.-G. Penaud, Cordes, arbres et permutations. Discrete Math. 117 (1993), no. 1-3, 89-105.
  • A. Errera, Analysis situs - Un problème d'énumération, Mémoires Acad. Bruxelles, Classe des sciences, Série 2, Vol. XI, Fasc. 6, No. 1421 (1931), 26 pp.
  • Ehrenfeucht, Andrzej; Haemer, Jeffrey; Haussler, David. Quasimonotonic sequences: theory, algorithms and applications. SIAM J. Algebraic Discrete Methods 8 (1987), no. 3, 410-429. MR0897739 (88h:06026)
  • I. M. H. Etherington, Non-associate powers and a functional equation. The Mathematical Gazette, 21 (1937): 36-39; addendum 21 (1937), 153.
  • I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
  • I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi. Part II is by A. Erdelyi and I. M. H. Etherington, and is on pages vii-xiv of the same issue.
  • K. Fan, Structure of a Hecke algebra quotient, J. Amer. Math. Soc., 10 (1997), 139-167.
  • Susanna Fishel, Myrto Kallipoliti and Eleni Tzanaki, Facets of the Generalized Cluster Complex and Regions in the Extended Catalan Arrangement of Type A, The electronic Journal of Combinatorics 20(4) (2013), #P7.
  • D. Foata and D. Zeilberger, A classic proof of a recurrence for a very classical sequence, J. Comb Thy A 80 380-384 1997.
  • H. G. Forder, Some problems in combinatorics, Math. Gazette, vol. 45, 1961, 199-201.
  • Fürlinger, J.; Hofbauer, J., q-Catalan numbers. J. Combin. Theory Ser. A 40 (1985), no. 2, 248-264. MR0814413 (87e:05017)
  • M. Gardner, Time Travel and Other Mathematical Bewilderments, Chap. 20 pp. 253-266, W. H. Freeman NY 1988.
  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • M. C. Golumbic and A. N. Trenk, Tolerance graphs, Vol. 89, Cambridge University Press, 2004, pp. 32.
  • S Goodenough, C Lavault, Overview on Heisenberg—Weyl Algebra and Subsets of Riordan Subgroups, The Electronic Journal of Combinatorics, 22(4) (2015), #P4.16,
  • H. W. Gould, Research bibliography of two special number sequences, Mathematica Monongaliae, Vol. 12, 1971.
  • D. Gouyou-Beauchamps, Chemins sous-diagonaux et tableau de Young, pp. 112-125 of "Combinatoire Enumerative (Montreal 1985)", Lect. Notes Math. 1234, 1986.
  • M. Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 53-63 and 85-93.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 530.
  • N. S. S. Gu, N. Y. Li and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
  • R. K. Guy, Dissecting a polygon into triangles, Research Paper #9, Math. Dept., Univ. Calgary, 1967.
  • R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis. Amer. Math. Monthly 80 (1973), 868-876.
  • Peter Hajnal and Gabor V. Nagy, A bijective proof of Shapiro's Catalan convolution, Elect. J. Combin., 21 (2014), #P2.42.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 67, (3.3.23).
  • F. Harary, G. Prins, and W. T. Tutte, The number of plane trees. Indag. Math. 26, 319-327, 1964.
  • J. Harris, Algebraic Geometry: A First Course (GTM 133), Springer-Verlag, 1992, pages 245-247.
  • S. Heubach, N. Y. Li and T. Mansour, Staircase tilings and k-Catalan structures, Discrete Math., 308 (2008), 5954-5964.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • Higgins, Peter M. Combinatorial results for semigroups of order-preserving mappings. Math. Proc. Camb. Phil. Soc. (1993), 113: 281-296.
  • B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
  • F. Hurtado, M. Noy, Ears of triangulations and Catalan numbers, Discrete Mathematics, Volume 149, Issues 1-3, Feb 22 1996, Pages 319-324.
  • M. Janjic, Determinants and Recurrence Sequences, Journal of Integer Sequences, 2012, Article 12.3.5.
  • R. H. Jeurissen, Raney and Catalan, Discrete Math., 308 (2008), 6298-6307.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 36.
  • Kim, Ki Hang; Rogers, Douglas G.; Roush, Fred W. Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013)
  • Klarner, D. A. A Correspondence Between Sets of Trees. Indag. Math. 31, 292-296, 1969.
  • M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
  • D. E. Knuth, The Art of Computer Programming, 2nd Edition, Vol. 1, Addison-Wesley, 1973, pp. 238.
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.6 (p. 450).
  • Thomas Koshy and Mohammad Salmassi, "Parity and Primality of Catalan Numbers", College Mathematics Journal, Vol. 37, No. 1 (Jan 2006), pp. 52-53.
  • M. Kosters, A theory of hexaflexagons, Nieuw Archief Wisk., 17 (1999), 349-362.
  • E. Krasko, A. Omelchenko, Brown's Theorem and its Application for Enumeration of Dissections and Planar Trees, The Electronic Journal of Combinatorics, 22 (2015), #P1.17.
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
  • P. Lafar and C. T. Long, A combinatorial problem, Amer. Math. Mnthly, 69 (1962), 876-883.
  • Laradji, A. and Umar, A. On certain finite semigroups of order-decreasing transformations I, Semigroup Forum 69 (2004), 184-200.
  • P. J. Larcombe, On pre-Catalan Catalan numbers: Kotelnikow (1766), Mathematics Today, 35 (1999), p. 25.
  • P. J. Larcombe, On the history of the Catalan numbers: a first record in China, Mathematics Today, 35 (1999), p. 89.
  • P. J. Larcombe, The 18th century Chinese discovery of the Catalan numbers, Math. Spectrum, 32 (1999/2000), 5-7.
  • P. J. Larcombe and P. D. C. Wilson, On the trail of the Catalan sequence, Mathematics Today, 34 (1998), 114-117.
  • P. J. Larcombe and P. D. C. Wilson, On the generating function of the Catalan sequence: a historical perspective, Congress. Numer., 149 (2001), 97-108.
  • G. S. Lueker, Some techniques for solving recurrences, Computing Surveys, 12 (1980), 419-436.
  • J. J. Luo, Antu Ming, the first inventor of Catalan numbers in the world [in Chinese], Neimenggu Daxue Xuebao, 19 (1998), 239-245.
  • C. L. Mallows, R. J. Vanderbei, Which Young Tableaux Can Represent an Outer Sum?, Journal of Integer Sequences, Vol. 18, 2015, #15.9.1.
  • Toufik Mansour, Matthias Schork, and Mark Shattuck, Catalan numbers and pattern restricted set partitions. Discrete Math. 312(2012), no. 20, 2979-2991. MR2956089
  • Toufik Mansour and Simone Severini, Enumeration of (k,2)-noncrossing partitions, Discrete Math., 308 (2008), 4570-4577.
  • M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000). Zbl 0945.05037
  • D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
  • A. Milicevic and N. Trinajstic, "Combinatorial Enumeration in Chemistry", Chem. Modell., Vol. 4, (2006), pp. 405-469.
  • Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015.
  • David Molnar, "Wiggly Games and Burnside's Lemma", Chapter 8, The Mathematics of Various Entertaining Subjects: Volume 3 (2019), Jennifer Beineke & Jason Rosenhouse, eds. Princeton University Press, Princeton and Oxford, p. 102.
  • C. O. Oakley and R. J. Wisner, Flexagons, Amer. Math. Monthly, 64 (1957), 143-154.
  • A. Panholzer and H. Prodinger, Bijections for ternary trees and non-crossing trees, Discrete Math., 250 (2002), 181-195 (see Eq. 4).
  • Papoulis, Athanasios. "A new method of inversion of the Laplace transform."Quart. Appl. Math 14.405-414 (1957): 124.
  • S. G. Penrice, Stacks, bracketings and CG-arrangements, Math. Mag., 72 (1999), 321-324.
  • C. A. Pickover, Wonders of Numbers, Chap. 71, Oxford Univ. Press NY 2000.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
  • G. Pólya, On the number of certain lattice polygons. J. Combinatorial Theory 6 1969 102-105. MR0236031 (38 #4329)
  • C. Pomerance, Divisors of the middle binomial coefficient, Amer. Math. Monthly, 112 (2015), 636-644.
  • Jocelyn Quaintance and Harris Kwong, A combinatorial interpretation of the Catalan and Bell number difference tables, Integers, 13 (2013), #A29.
  • Ronald C. Read, "The Graph Theorists who Count -- and What They Count", in 'The Mathematical Gardner', in D. A. Klarner, Ed., pp. 331-334, Wadsworth CA 1989.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
  • J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
  • T. Santiago Costa Oliveira, "Catalan traffic" and integrals on the Grassmannian of lines, Discr. Math., 308 (2007), 148-152.
  • A. Sapounakis, I. Tasoulas and P. Tsikouras, Counting strings in Dyck paths, Discrete Math., 307 (2007), 2909-2924.
  • E. Schröder, Vier combinatorische Probleme, Z. f. Math. Phys., 15 (1870), 361-376.
  • Shapiro, Louis W. Catalan numbers and "total information" numbers. Proceedings of the Sixth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1975), pp. 531-539. Congressus Numerantium, No. XIV, Utilitas Math., Winnipeg, Man., 1975. MR0398853 (53 #2704).
  • L. W. Shapiro, A short proof of an identity of Touchard's concerning Catalan numbers, J. Combin. Theory, A 20 (1976), 375-376.
  • L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • L. W. Shapiro, W.-J. Woan and S. Getu, The Catalan numbers via the World Series, Math. Mag., 66 (1993), 20-22.
  • D. M. Silberger, Occurrences of the integer (2n-2)!/n!(n-1)!, Roczniki Polskiego Towarzystwa Math. 13 (1969): 91-96.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • S. Snover and S. Troyer, Multidimensional Catalan numbers, Abstracts 848-05-94 and 848-05-95, 848th Meeting, Amer. Math. Soc., Worcester Mass., March 15-16, 1989.
  • R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 1, 1986, Vol. 2, 1999; see especially Chapter 6.
  • R. P. Stanley, Recent Progress in Algebraic Combinatorics, Bull. Amer. Math. Soc., 40 (2003), 55-68.
  • Richard P. Stanley, "Catalan Numbers", Cambridge University Press, 2015.
  • J. J. Sylvester, On reducible cyclodes, Coll. Math. Papers, Vol. 2, see especially page 670, where Catalan numbers appear.
  • Thiel, Marko. "A new cyclic sieving phenomenon for Catalan objects." Discrete Mathematics 340.3 (2017): 426-429.
  • I. Vun and P. Belcher, Catalan numbers, Mathematical Spectrum, 30 (1997/1998), 3-5.
  • D. Wells, Penguin Dictionary of Curious and Interesting Numbers, Entry 42 p 121, Penguin Books, 1987.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 41.
  • J. Wuttke, The zig-zag walk with scattering and absorption on the real half line and in a lattice model, J. Phys. A 47 (2014), 215203, 1-9.

Crossrefs

A row of A060854.
See A001003, A001190, A001699, A000081 for other ways to count parentheses.
Enumerates objects encoded by A014486.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A051168 (diagonal of the square array described).
Cf. A033552, A176137 (partitions into Catalan numbers).
Cf. A000753, A000736 (Boustrophedon transforms).
Cf. A120303 (largest prime factor of Catalan number).
Cf. A121839 (reciprocal Catalan constant), A268813.
Cf. A038003, A119861, A119908, A120274, A120275 (odd Catalan number).
Cf. A002390 (decimal expansion of natural logarithm of golden ratio).
Coefficients of square root of the g.f. are A001795/A046161.
For a(n) mod 6 see A259667.
For a(n) in base 2 see A264663.
Hankel transforms with first terms omitted: A001477, A006858, A091962, A078920, A123352, A368025.
Cf. A332602 (conjectured production matrix).
Polyominoes: A001683(n+2) (oriented), A000207 (unoriented), A369314 (chiral), A208355(n-1) (achiral), A001764 {4,oo}.

Programs

  • GAP
    A000108:=List([0..30],n->Binomial(2*n,n)/(n+1)); # Muniru A Asiru, Feb 17 2018
  • Haskell
    import Data.List (genericIndex)
    a000108 n = genericIndex a000108_list n
    a000108_list = 1 : catalan [1] where
       catalan cs = c : catalan (c:cs) where
          c = sum $ zipWith (*) cs $ reverse cs
    -- Reinhard Zumkeller, Nov 12 2011
    a000108 = map last $ iterate (scanl1 (+) . (++ [0])) [1]
    -- David Spies, Aug 23 2015
    
  • Magma
    C:= func< n | Binomial(2*n,n)/(n+1) >; [ C(n) : n in [0..60]];
    
  • Magma
    [Catalan(n): n in [0..40]]; // Vincenzo Librandi, Apr 02 2011
    
  • Maple
    A000108 := n->binomial(2*n,n)/(n+1);
    G000108 := (1 - sqrt(1 - 4*x)) / (2*x);
    spec := [ A, {A=Prod(Z,Sequence(A))}, unlabeled ]: [ seq(combstruct[count](spec, size=n+1), n=0..42) ];
    with(combstruct): bin := {B=Union(Z,Prod(B,B))}: seq(count([B,bin,unlabeled],size=n+1), n=0..25); # Zerinvary Lajos, Dec 05 2007
    gser := series(G000108, x=0, 42): seq(coeff(gser, x, n), n=0..41); # Zerinvary Lajos, May 21 2008
    seq((2*n)!*coeff(series(hypergeom([],[2],x^2),x,2*n+2),x,2*n),n=0..30); # Peter Luschny, Jan 31 2015
    A000108List := proc(m) local A, P, n; A := [1, 1]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), A[-1]]);
    A := [op(A), P[-1]] od; A end: A000108List(31); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[(2 n)!/n!/(n + 1)!, {n, 0, 20}]
    Table[4^n Gamma[n + 1/2]/(Sqrt[Pi] Gamma[n + 2]), {n, 0, 20}] (* Eric W. Weisstein, Oct 31 2024 *)
    Table[Hypergeometric2F1[1 - n, -n, 2, 1], {n, 0, 20}] (* Richard L. Ollerton, Sep 13 2006 *)
    Table[CatalanNumber @ n, {n, 0, 20}] (* Robert G. Wilson v, Feb 15 2011 *)
    CatalanNumber[Range[0, 20]] (* Eric W. Weisstein, Oct 31 2024 *)
    CoefficientList[InverseSeries[Series[x/Sum[x^n, {n, 0, 31}], {x, 0, 31}]]/x, x] (* Mats Granvik, Nov 24 2013 *)
    CoefficientList[Series[(1 - Sqrt[1 - 4 x])/(2 x), {x, 0, 20}], x] (* Stefano Spezia, Aug 31 2018 *)
  • Maxima
    A000108(n):=binomial(2*n,n)/(n+1)$ makelist(A000108(n),n,0,30); /* Martin Ettl, Oct 24 2012 */
    
  • MuPAD
    combinat::dyckWords::count(n) $ n = 0..38 // Zerinvary Lajos, Apr 14 2007
    
  • PARI
    a(n)=binomial(2*n,n)/(n+1) \\ M. F. Hasler, Aug 25 2012
    
  • PARI
    a(n) = (2*n)! / n! / (n+1)!
    
  • PARI
    a(n) = my(A, m); if( n<0, 0, m=1; A = 1 + x + O(x^2); while(m<=n, m*=2; A = sqrt(subst(A, x, 4*x^2)); A += (A - 1) / (2*x*A)); polcoeff(A, n));
    
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( serreverse( x / (1 + x)^2 + x * O(x^n)), n))}; /* Michael Somos */
    
  • PARI
    (recur(a,b)=if(b<=2,(a==2)+(a==b)+(a!=b)*(1+a/2), (1+a/b)*recur(a,b-1))); a(n)=recur(n,n); \\ R. J. Cano, Nov 22 2012
    
  • PARI
    x='x+O('x^40); Vec((1-sqrt(1-4*x))/(2*x)) \\ Altug Alkan, Oct 13 2015
    
  • Python
    from gmpy2 import divexact
    A000108 = [1, 1]
    for n in range(1, 10**3):
        A000108.append(divexact(A000108[-1]*(4*n+2),(n+2))) # Chai Wah Wu, Aug 31 2014
    
  • Python
    # Works in Sage also.
    A000108 = [1]
    for n in range(1000):
        A000108.append(A000108[-1]*(4*n+2)//(n+2)) # Günter Rote, Nov 08 2023
    
  • Sage
    [catalan_number(i) for i in range(27)] # Zerinvary Lajos, Jun 26 2008
    
  • Sage
    # Generalized algorithm of L. Seidel
    def A000108_list(n) :
        D = [0]*(n+1); D[1] = 1
        b = True; h = 1; R = []
        for i in range(2*n-1) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1; R.append(D[1])
            else :
                for k in range(1,h, 1) : D[k] += D[k+1]
            b = not b
        return R
    A000108_list(31) # Peter Luschny, Jun 02 2012
    

Formula

a(n) = binomial(2*n, n)/(n+1) = (2*n)!/(n!*(n+1)!) = A000984(n)/(n+1).
Recurrence: a(n) = 2*(2*n-1)*a(n-1)/(n+1) with a(0) = 1.
Recurrence: a(n) = Sum_{k=0..n-1} a(k)a(n-1-k).
G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x), and satisfies A(x) = 1 + x*A(x)^2.
a(n) = Product_{k=2..n} (1 + n/k).
a(n+1) = Sum_{i} binomial(n, 2*i)*2^(n-2*i)*a(i). - Touchard
It is known that a(n) is odd if and only if n=2^k-1, k=0, 1, 2, 3, ... - Emeric Deutsch, Aug 04 2002, corrected by M. F. Hasler, Nov 08 2015
Using the Stirling approximation in A000142 we get the asymptotic expansion a(n) ~ 4^n / (sqrt(Pi * n) * (n + 1)). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 13 2001
Integral representation: a(n) = (1/(2*Pi))*Integral_{x=0..4} x^n*sqrt((4-x)/x). - Karol A. Penson, Apr 12 2001
E.g.f.: exp(2*x)*(I_0(2*x)-I_1(2*x)), where I_n is Bessel function. - Karol A. Penson, Oct 07 2001
a(n) = polygorial(n, 6)/polygorial(n, 3). - Daniel Dockery (peritus(AT)gmail.com), Jun 24 2003
G.f. A(x) satisfies ((A(x) + A(-x)) / 2)^2 = A(4*x^2). - Michael Somos, Jun 27 2003
G.f. A(x) satisfies Sum_{k>=1} k(A(x)-1)^k = Sum_{n>=1} 4^{n-1}*x^n. - Shapiro, Woan, Getu
a(n+m) = Sum_{k} A039599(n, k)*A039599(m, k). - Philippe Deléham, Dec 22 2003
a(n+1) = (1/(n+1))*Sum_{k=0..n} a(n-k)*binomial(2k+1, k+1). - Philippe Deléham, Jan 24 2004
a(n) = Sum_{k>=0} A008313(n, k)^2. - Philippe Deléham, Feb 14 2004
a(m+n+1) = Sum_{k>=0} A039598(m, k)*A039598(n, k). - Philippe Deléham, Feb 15 2004
a(n) = Sum_{k=0..n} (-1)^k*2^(n-k)*binomial(n, k)*binomial(k, floor(k/2)). - Paul Barry, Jan 27 2005
Sum_{n>=0} 1/a(n) = 2 + 4*Pi/3^(5/2) = F(1,2;1/2;1/4) = A268813 = 2.806133050770763... (see L'Univers de Pi link). - Gerald McGarvey and Benoit Cloitre, Feb 13 2005
a(n) = Sum_{k=0..floor(n/2)} ((n-2*k+1)*binomial(n, n-k)/(n-k+1))^2, which is equivalent to: a(n) = Sum_{k=0..n} A053121(n, k)^2, for n >= 0. - Paul D. Hanna, Apr 23 2005
a((m+n)/2) = Sum_{k>=0} A053121(m, k)*A053121(n, k) if m+n is even. - Philippe Deléham, May 26 2005
E.g.f. Sum_{n>=0} a(n) * x^(2*n) / (2*n)! = BesselI(1, 2*x) / x. - Michael Somos, Jun 22 2005
Given g.f. A(x), then B(x) = x * A(x^3) satisfies 0 = f(x, B(X)) where f(u, v) = u - v + (u*v)^2 or B(x) = x + (x * B(x))^2 which implies B(-B(x)) = -x and also (1 + B^3) / B^2 = (1 - x^3) / x^2. - Michael Somos, Jun 27 2005
a(n) = a(n-1)*(4-6/(n+1)). a(n) = 2a(n-1)*(8a(n-2)+a(n-1))/(10a(n-2)-a(n-1)). - Franklin T. Adams-Watters, Feb 08 2006
Sum_{k>=1} a(k)/4^k = 1. - Franklin T. Adams-Watters, Jun 28 2006
a(n) = A047996(2*n+1, n). - Philippe Deléham, Jul 25 2006
Binomial transform of A005043. - Philippe Deléham, Oct 20 2006
a(n) = Sum_{k=0..n} (-1)^k*A116395(n,k). - Philippe Deléham, Nov 07 2006
a(n) = (1/(s-n))*Sum_{k=0..n} (-1)^k (k+s-n)*binomial(s-n,k) * binomial(s+n-k,s) with s a nonnegative free integer [H. W. Gould].
a(k) = Sum_{i=1..k} |A008276(i,k)| * (k-1)^(k-i) / k!. - André F. Labossière, May 29 2007
a(n) = Sum_{k=0..n} A129818(n,k) * A007852(k+1). - Philippe Deléham, Jun 20 2007
a(n) = Sum_{k=0..n} A109466(n,k) * A127632(k). - Philippe Deléham, Jun 20 2007
Row sums of triangle A124926. - Gary W. Adamson, Oct 22 2007
Limit_{n->oo} (1 + Sum_{k=0..n} a(k)/A004171(k)) = 4/Pi. - Reinhard Zumkeller, Aug 26 2008
a(n) = Sum_{k=0..n} A120730(n,k)^2 and a(k+1) = Sum_{n>=k} A120730(n,k). - Philippe Deléham, Oct 18 2008
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, the present sequence is Phi([1]) (also Phi([1,1])). - Gary W. Adamson, Oct 27 2008
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}...Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n) where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i < l_(i+1) and l_(i+1) <> 0 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(n) = A000680(n)/A006472(n+1). - Mark Dols, Jul 14 2010; corrected by M. F. Hasler, Nov 08 2015
Let A(x) be the g.f., then B(x)=x*A(x) satisfies the differential equation B'(x)-2*B'(x)*B(x)-1=0. - Vladimir Kruchinin, Jan 18 2011
Complement of A092459; A010058(a(n)) = 1. - Reinhard Zumkeller, Mar 29 2011
G.f.: 1/(1-x/(1-x/(1-x/(...)))) (continued fraction). - Joerg Arndt, Mar 18 2011
With F(x) = (1-2*x-sqrt(1-4*x))/(2*x) an o.g.f. in x for the Catalan series, G(x) = x/(1+x)^2 is the compositional inverse of F (nulling the n=0 term). - Tom Copeland, Sep 04 2011
With H(x) = 1/(dG(x)/dx) = (1+x)^3 / (1-x), the n-th Catalan number is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)), and H(x) is the o.g.f. for A115291. - Tom Copeland, Sep 04 2011
From Tom Copeland, Sep 30 2011: (Start)
With F(x) = (1-sqrt(1-4*x))/2 an o.g.f. in x for the Catalan series, G(x)= x*(1-x) is the compositional inverse and this relates the Catalan numbers to the row sums of A125181.
With H(x) = 1/(dG(x)/dx) = 1/(1-2x), the n-th Catalan number (offset 1) is given by (1/n!)*((H(x)*d/dx)^n)x evaluated at x=0, i.e., F(x) = exp(x*H(u)*d/du)u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)). (End)
G.f.: (1-sqrt(1-4*x))/(2*x) = G(0) where G(k) = 1 + (4*k+1)*x/(k+1-2*x*(k+1)*(4*k+3)/(2*x*(4*k+3)+(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2011
E.g.f.: exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)) = G(0) where G(k) = 1 + (4*k+1)*x/((k+1)*(2*k+1)-x*(k+1)*(2*k+1)*(4*k+3)/(x*(4*k+3)+(k+1)*(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 30 2011
E.g.f.: Hypergeometric([1/2],[2],4*x) which coincides with the e.g.f. given just above, and also by Karol A. Penson further above. - Wolfdieter Lang, Jan 13 2012
A076050(a(n)) = n + 1 for n > 0. - Reinhard Zumkeller, Feb 17 2012
a(n) = A208355(2*n-1) = A208355(2*n) for n > 0. - Reinhard Zumkeller, Mar 04 2012
a(n+1) = A214292(2*n+1,n) = A214292(2*n+2,n). - Reinhard Zumkeller, Jul 12 2012
G.f.: 1 + 2*x/(U(0)-2*x) where U(k) = k*(4*x+1) + 2*x + 2 - x*(2*k+3)*(2*k+4)/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 20 2012
G.f.: hypergeom([1/2,1],[2],4*x). - Joerg Arndt, Apr 06 2013
Special values of Jacobi polynomials, in Maple notation: a(n) = 4^n*JacobiP(n,1,-1/2-n,-1)/(n+1). - Karol A. Penson, Jul 28 2013
For n > 0: a(n) = sum of row n in triangle A001263. - Reinhard Zumkeller, Oct 10 2013
a(n) = binomial(2n,n-1)/n and a(n) mod n = binomial(2n,n) mod n = A059288(n). - Jonathan Sondow, Dec 14 2013
a(n-1) = Sum_{t1+2*t2+...+n*tn=n} (-1)^(1+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*a(1)^t1*a(2)^t2*...*a(n)^tn. - Mircea Merca, Feb 27 2014
a(n) = Sum_{k=1..n} binomial(n+k-1,n)/n if n > 0. Alexander Adamchuk, Mar 25 2014
a(n) = -2^(2*n+1) * binomial(n-1/2, -3/2). - Peter Luschny, May 06 2014
a(n) = (4*A000984(n) - A000984(n+1))/2. - Stanislav Sykora, Aug 09 2014
a(n) = A246458(n) * A246466(n). - Tom Edgar, Sep 02 2014
a(n) = (2*n)!*[x^(2*n)]hypergeom([],[2],x^2). - Peter Luschny, Jan 31 2015
a(n) = 4^(n-1)*hypergeom([3/2, 1-n], [3], 1). - Peter Luschny, Feb 03 2015
a(2n) = 2*A000150(2n); a(2n+1) = 2*A000150(2n+1) + a(n). - John Bodeen, Jun 24 2015
a(n) = Sum_{t=1..n+1} n^(t-1)*abs(Stirling1(n+1, t)) / Sum_{t=1..n+1} abs(Stirling1(n+1, t)), for n > 0, see (10) in Cereceda link. - Michel Marcus, Oct 06 2015
a(n) ~ 4^(n-2)*(128 + 160/N^2 + 84/N^4 + 715/N^6 - 10180/N^8)/(N^(3/2)*Pi^(1/2)) where N = 4*n+3. - Peter Luschny, Oct 14 2015
a(n) = Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*binomial(n+1-k,k)*a(n-k) if n > 0; and a(0) = 1. - David Pasino, Jun 29 2016
Sum_{n>=0} (-1)^n/a(n) = 14/25 - 24*arccsch(2)/(25*sqrt(5)) = 14/25 - 24*A002390/(25*sqrt(5)) = 0.353403708337278061333... - Ilya Gutkovskiy, Jun 30 2016
C(n) = (1/n) * Sum_{i+j+k=n-1} C(i)*C(j)*C(k)*(k+1), n >= 1. - Yuchun Ji, Feb 21 2016
C(n) = 1 + Sum_{i+j+kYuchun Ji, Sep 01 2016
a(n) = A001700(n) - A162551(n) = binomial(2*n+1,n+1). - 2*binomial(2*n,n-1). - Taras Goy, Aug 09 2018
G.f.: A(x) = (1 - sqrt(1 - 4*x)) / (2*x) = 2F1(1/2,1;2;4*x). G.f. A(x) satisfies A = 1 + x*A^2. - R. J. Mathar, Nov 17 2018
C(n) = 1 + Sum_{i=0..n-1} A000245(i). - Yuchun Ji, Jan 10 2019
From A.H.M. Smeets, Apr 11 2020: (Start)
(1+sqrt(1+4*x))/2 = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4; and sqrt(x+sqrt(x+sqrt(x+...))) = 1-Sum_{i >= 0} a(i)*(-x)^(i+1), for any complex x with |x| < 1/4 and x <> 0. (End)
a(3n+1)*a(5n+4)*a(15n+10) = a(3n+2)*a(5n+2)*a(15n+11). The first case of Catalan product equation of a triple partition of 23n+15. - Yuchun Ji, Sep 27 2020
a(n) = 4^n * (-1)^(n+1) * 3F2[{n + 1,n + 1/2,n}, {3/2,1}, -1], n >= 1. - Sergii Voloshyn, Oct 22 2020
a(n) = 2^(1 + 2 n) * (-1)^(n)/(1 + n) * 3F2[{n, 1/2 + n, 1 + n}, {1/2, 1}, -1], n >= 1. - Sergii Voloshyn, Nov 08 2020
a(n) = (1/Pi)*4^(n+1)*Integral_{x=0..Pi/2} cos(x)^(2*n)*sin(x)^2 dx. - Greg Dresden, May 30 2021
From Peter Bala, Aug 17 2021: (Start)
G.f. A(x) satisfies A(x) = 1/sqrt(1 - 4*x) * A( -x/(1 - 4*x) ) and (A(x) + A(-x))/2 = 1/sqrt(1 - 4*x) * A( -2*x/(1 - 4*x) ); these are the cases k = 0 and k = -1 of the general formula 1/sqrt(1 - 4*x) * A( (k-1)*x/(1 - 4*x) ) = Sum_{n >= 0} ((k^(n+1) - 1)/(k - 1))*Catalan(n)*x^n.
2 - sqrt(1 - 4*x)/A( k*x/(1 - 4*x) ) = 1 + Sum_{n >= 1} (1 + (k + 1)^n) * Catalan(n-1)*x^n. (End)
Sum_{n>=0} a(n)*(-1/4)^n = 2*(sqrt(2)-1) (A163960). - Amiram Eldar, Mar 22 2022
0 = a(n)*(16*a(n+1) - 10*a(n+2)) + a(n+1)*(2*a(n+1) + a(n+2)) for all n>=0. - Michael Somos, Dec 12 2022
G.f.: (offset 1) 1/G(x), with G(x) = 1 - 2*x - x^2/G(x) (Jacobi continued fraction). - Nikolaos Pantelidis, Feb 01 2023
a(n) = K^(2n+1, n, 1) for all n >= 0, where K^(n, s, x) is the Krawtchouk polynomial defined to be Sum_{k=0..s} (-1)^k * binomial(n-x, s-k) * binomial(x, k). - Vladislav Shubin, Aug 17 2023
From Peter Bala, Feb 03 2024: (Start)
The g.f. A(x) satisfies the following functional equations:
A(x) = 1 + x/(1 - 4*x) * A(-x/(1 - 4*x))^2,
A(x^2) = 1/(1 - 2*x) * A(- x/(1 - 2*x))^2 and, for arbitrary k,
1/(1 - k*x) * A(x/(1 - k*x))^2 = 1/(1 - (k+4)*x) * A(-x/(1 - (k+4)*x))^2. (End)
a(n) = A363448(n) + A363449(n). - Julien Rouyer, Jun 28 2024

A040000 a(0)=1; a(n)=2 for n >= 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Continued fraction expansion of sqrt(2) is 1 + 1/(2 + 1/(2 + 1/(2 + ...))).
Inverse binomial transform of Mersenne numbers A000225(n+1) = 2^(n+1) - 1. - Paul Barry, Feb 28 2003
A Chebyshev transform of 2^n: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). - Paul Barry, Oct 31 2004
An inverse Catalan transform of A068875 under the mapping g(x)->g(x(1-x)). A068875 can be retrieved using the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108. A040000 and A068875 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
Sequence of electron arrangement in the 1s 2s and 3s atomic subshells. Cf. A001105, A016825. - Jeremy Gardiner, Dec 19 2004
Binomial transform of A165326. - Philippe Deléham, Sep 16 2009
Let m=2. We observe that a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). Then there is a link with A113311 and A115291: it is the same formula with respectively m=3 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
With offset 1: number of permutations where |p(i) - p(i+1)| <= 1 for n=1,2,...,n-1. This is the identical permutation and (for n>1) its reversal.
Equals INVERT transform of bar(1, 1, -1, -1, ...).
Eventual period is (2). - Zak Seidov, Mar 05 2011
Also decimal expansion of 11/90. - Vincenzo Librandi, Sep 24 2011
a(n) = 3 - A054977(n); right edge of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
With offset 1: minimum cardinality of the range of a periodic sequence with (least) period n. Of course the range's maximum cardinality for a purely periodic sequence with (least) period n is n. - Rick L. Shepherd, Dec 08 2014
With offset 1: n*a(1) + (n-1)*a(2) + ... + 2*a(n-1) + a(n) = n^2. - Warren Breslow, Dec 12 2014
With offset 1: decimal expansion of gamma(4) = 11/9 where gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Sep 11 2016
a(n) equals the number of binary sequences of length n where no two consecutive terms differ. Also equals the number of binary sequences of length n where no two consecutive terms are the same. - David Nacin, May 31 2017
a(n) is the period of the continued fractions for sqrt((n+2)/(n+1)) and sqrt((n+1)/(n+2)). - A.H.M. Smeets, Dec 05 2017
Also, number of self-avoiding walks and coordination sequence for the one-dimensional lattice Z. - Sean A. Irvine, Jul 27 2020

Examples

			sqrt(2) = 1.41421356237309504... = 1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...)))). - _Harry J. Smith_, Apr 21 2009
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
11/90 = 0.1222222222222222222... - _Natan Arie Consigli_, Sep 11 2016
		

References

  • A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 186.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.4 Powers and Roots, p. 144.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 276-278.

Crossrefs

Convolution square is A008574.
See A003945 etc. for (1+x)/(1-k*x).
From Jaume Oliver Lafont, Mar 26 2009: (Start)
Sum_{0<=k<=n} a(k) = A005408(n).
Prod_{0<=k<=n} a(k) = A000079(n). (End)
Cf. A000674 (boustrophedon transform).
Cf. A001333/A000129 (continued fraction convergents).
Cf. A000122, A002193 (sqrt(2) decimal expansion), A006487 (Egyptian fraction).
Cf. Other continued fractions for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040002 (contfrac(sqrt(5)) = (2,4,4,...)), A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).

Programs

  • Haskell
    a040000 0 = 1; a040000 n = 2
    a040000_list = 1 : repeat 2  -- Reinhard Zumkeller, May 07 2012
  • Maple
    Digits := 100: convert(evalf(sqrt(2)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[2],300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
    a[ n_] := 2 - Boole[n == 0]; (* Michael Somos, Dec 28 2014 *)
    PadRight[{1},120,2] (* or *) RealDigits[11/90, 10, 120][[1]] (* Harvey P. Dale, Jul 12 2025 *)
  • PARI
    {a(n) = 2-!n}; /* Michael Somos, Apr 16 2007 */
    
  • PARI
    a(n)=1+sign(n)  \\ Jaume Oliver Lafont, Mar 26 2009
    
  • PARI
    allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2)); for (n=0, 20000, write("b040000.txt", n, " ", x[n+1]));  \\ Harry J. Smith, Apr 21 2009
    

Formula

G.f.: (1+x)/(1-x). - Paul Barry, Feb 28 2003
a(n) = 2 - 0^n; a(n) = Sum_{k=0..n} binomial(1, k). - Paul Barry, Oct 16 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*2^(n-2*k)/(n-k). - Paul Barry, Oct 31 2004
A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A068875(n-k). - Paul Barry, Nov 14 2004
From Michael Somos, Apr 16 2007: (Start)
Euler transform of length 2 sequence [2, -1].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)*(u+v) - 2*v*(u-w).
E.g.f.: 2*exp(x) - 1.
a(n) = a(-n) for all n in Z (one possible extension to n<0). (End)
G.f.: (1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 26 2009
G.f.: exp(2*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = Sum_{k=0..n} A108561(n,k)*(-1)^k. - Philippe Deléham, Nov 17 2013
a(n) = 1 + sign(n). - Wesley Ivan Hurt, Apr 16 2014
10 * 11/90 = 11/9 = (11/2 R)/(9/2 R) = Cp(4)/Cv(4) = A272005/A272004, with R = A081822 (or A070064). - Natan Arie Consigli, Sep 11 2016
a(n) = A001227(A000040(n+1)). - Omar E. Pol, Feb 28 2018

A089408 Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A089864.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 4, 5, 10, 14, 28, 42, 84, 132, 264, 429, 858, 1430, 2860, 4862, 9724, 16796, 33592, 58786, 117572, 208012, 416024, 742900, 1485800, 2674440, 5348880, 9694845, 19389690, 35357670, 70715340, 129644790, 259289580, 477638700
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

The number of n-node binary trees fixed by the corresponding automorphism(s). Essentially A000108 interleaved with A068875.

Crossrefs

Cf. A089402.
Cf. A000108.

Programs

  • Maple
    seq(seq(binomial(2*j,j)/(1+j)*i, i=1..2),j=0..19); # Zerinvary Lajos, Apr 29 2007
  • Mathematica
    a[0] = 1; a[n_] := If[EvenQ[n], 2*CatalanNumber[n/2 - 1], CatalanNumber[(n-1)/2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jul 24 2013 *)
  • Python
    from sympy import catalan
    def a(n): return 1 if n==0 else 2*catalan(n//2 - 1) if n%2==0 else catalan((n - 1)//2) # Indranil Ghosh, May 23 2017
  • Scheme
    (define (A089408 n) (cond ((zero? n) 1) ((even? n) (* 2 (A000108 (-1+ (/ n 2))))) (else (A000108 (/ (-1+ n) 2)))))
    

Formula

a(0)=1, a(2n) = 2*A000108(n-1), a(2n+1) = A000108(n)
G.f.: (1+4x-(1+2x)sqrt(1-4x^2))/(2x). - Paul Barry, Apr 11 2005
a(2*j+i) = i*C(2*j,j)/(1+j), i=1..2, j >= 0. - Zerinvary Lajos, Apr 29 2007
D-finite with recurrence: (n+1)*a(n) - 2*a(n-1) + 4(3-n)*a(n-2) = 0. - R. J. Mathar, Dec 17 2011, corrected by Georg Fischer, Feb 13 2020

A000957 Fine's sequence (or Fine numbers): number of relations of valence >= 1 on an n-set; also number of ordered rooted trees with n nodes having root of even degree.

Original entry on oeis.org

0, 1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724, 91144, 325878, 1174281, 4260282, 15548694, 57048048, 210295326, 778483932, 2892818244, 10786724388, 40347919626, 151355847012, 569274150156, 2146336125648, 8110508473252, 30711521221376
Offset: 0

Views

Author

Keywords

Comments

Row-sum of signed Catalan triangle A009766. - Wouter Meeussen
There are two schools of thought about the best indexing for these numbers. Deutsch and Shapiro have a(4) = 6 whereas here a(5) = 6. The formulas given here use both labelings.
From D. G. Rogers, Oct 18 2005: (Start)
I notice that you have some other zero-one evaluations of binary bracketings (such as A055395). But if you have an operation # with 0#0 = 1#0 = 1, 0#1 = 1#1 = 0, and look at the number of bracketings of a string of n 0's that come out 0, you get another instance of the Fine numbers.
For Z = 1 + x(ZW + WW) = 1 + x CW and W = x(ZZ + ZW) = xZC. Hence Z = 1 + xxCCZ, the functional equational for the g.f. of the Fine numbers. Indeed, C = Z + W = Z + xCZ.
In terms of rooted planar trees with root of even degree, this says that of all rooted planar trees, some have root of even degree (Z) and some have root of odd degree (xCZ). (End)
Hankel transform of a(n+1) = [1,0,1,2,6,18,57,186,...] is A000012 = [1,1,1,1,1,...]. - Philippe Deléham, Oct 24 2007
Starting with offset 3 = iterates of M * [1,0,0,0,...] where M = a tridiagonal matrix with [0,2,2,2,...] as the main diagonal and [1,1,1,...] as the super and subdiagonals. - Gary W. Adamson, Jan 09 2009
Starting with 1 and convolved with A068875 = the Catalan numbers with offset 1. - Gary W. Adamson, May 01 2009
For a relation to non-crossing partitions of the root system A_n, see A100754. - Tom Copeland, Oct 19 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x) = [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)] = (x-2x^2)/(1-x)^2, and Fin(Cinv(x)) = P(x).
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)] = (x-x^2) / (1 + x - x^2).
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
a(n+1) is the number of Dyck paths of semilength n avoiding UD at Level 0. For n = 3 the a(4) = 2 such Dyck paths are UUUDDD and UUDUDD. - Ran Pan, Sep 23 2015
For n >= 3, a(n) is the number of permutations pi of [n-2] such that s(pi) avoids the patterns 132, 231, and 312, where s is West's stack-sorting map. - Colin Defant, Sep 16 2018
Named after the American scientist Terrence Leon Fine (1939-2021). - Amiram Eldar, Jun 08 2021

Examples

			G.f. = x + x^3 + 2*x^4 + 6*x^5 + 18*x^6 + 57*x^7 + 186*x^8 + 622*x^9 + 2120*x^10 + ...
		

References

  • Emeric Deutsch and Louis W. Shapiro, Seventeen Catalan identities, Bull. Instit. Combin. Applic., Vol. 31 (2001), pp. 31-38.
  • Ki Hang Kim, Douglas G. Rogers and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013). - N. J. A. Sloane, Jun 05 2012
  • Louis W. Shapiro and Carol J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A065600.
Sequence with signs: A064310.
Bisections: A138413, A138414.
Logarithmic derivative: A072547.

Programs

  • Haskell
    a000957 n = a000957_list !! n
    a000957_list = 0 : 1 :
       (map (`div` 2) $ tail $ zipWith (-) a000108_list a000957_list)
    -- Reinhard Zumkeller, Nov 12 2011
    
  • Magma
    [0,1] cat  [n le 1 select n-1 else (Catalan(n)-Self(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Nov 17 2016
    
  • Maple
    t1 := (1-sqrt(1-4*x))/(3-sqrt(1-4*x)); t2 := series(t1,x,90); A000957 := n- coeff(t2,x,n);
    A000957 := proc(n): if n = 0 then 0 else add((-1)^(n+k-1)*binomial(n+k-1, n-1)*(n-k)/n, k=0..n-1) fi: end: seq(A000957(n), n=0..28); # Johannes W. Meijer, Jul 22 2013
    # third Maple program:
    a:= proc(n) option remember; `if`(n<3, n*(2-n),
          ((7*n-12)*a(n-1)+(4*n-6)*a(n-2))/(2*n))
        end:
    seq(a(n), n=0..32);  # Alois P. Heinz, Apr 23 2020
  • Mathematica
    Table[ Plus@@Table[ (-1)^(m+n) (n+m)!/n!/m! (n-m+1)/(n+1), {m, 0, n} ], {n, 0, 36} ] (* Wouter Meeussen *)
    a[0] = 0; a[n_] := (1/2)*(-3*(-1/2)^n + 2^(n+1)*(2n-1)!!* Hypergeometric2F1Regularized[2, 2n+1, n+2, -1]); (* Jean-François Alcover, Feb 22 2012 *)
    Table[2^n (n-2) (2n-1)!! (3 (n-1) Hypergeometric2F1[1, 3-n, 3+n, 2] - n - 2)/(n+2)! + KroneckerDelta[n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
  • Maxima
    C(n):=binomial(2*n,n)/(n+1);
    a(n):=if n<=0 then 0 else if n=1 then 1 else  sum(C(n-i-1)*(a(i)+a(i-1)),i,2,n-1);
    /* Vladimir Kruchinin, Apr 23 2020 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 2 / (1 - sqrt(1 - 4*x + x*O(x^n)))), n))}; /* Michael Somos, Sep 17 2006 */
    
  • PARI
    {a(n) = if( n<1, 0, polcoeff( 1 / (1 + 1 / serreverse(x - x^2 + x*O(x^n))), n))}; /* Michael Somos, Sep 30 2006 */
    
  • Python
    from itertools import count, islice
    def A000957_gen(): # generator of terms
        yield from (0,1,0)
        a, c = 0, 1
        for n in count(1):
            yield (a:=(c:=c*((n<<2)+2)//(n+2))-a>>1)
    A000957_list = list(islice(A000957_gen(),20)) # Chai Wah Wu, Apr 26 2023
  • Sage
    def Fine():
        f, c, n = 1, 1, 1
        yield 0
        while True:
            yield f
            n += 1
            c = c * (4*n - 6) // n
            f = (c - f) // 2
    a = Fine()
    print([next(a) for  in range(29)])  # _Peter Luschny, Nov 30 2016
    

Formula

Catalan(n) = 2*a(n+1) + a(n), n >= 1. [Corrected by Pontus von Brömssen, Jul 23 2022]
a(n) = (A064306(n-1) + (-1)^(n-1))/2^n, n >= 1.
G.f.: (1-sqrt(1-4*x))/(3-sqrt(1-4*x)) (compare g.f. for Catalan numbers, A000108). - Emeric Deutsch
a(n) ~ 4^n/(9*n*sqrt(n*Pi)). (Corrected by Peter Luschny, Oct 26 2015.)
a(n) = (2/(n-1))*Sum_{j=0..n-3}(-2)^j*(j+1)*binomial(2n-1, n-3-j), n>=2. - Emeric Deutsch, Dec 26 2003
a(n) = 3*Sum_{j=0..floor((n-1)/2)} binomial(2n-2j-2, n-1) - binomial(2n, n) for n>0. - Emeric Deutsch, Jan 28 2004
Reversion of g.f. (x-2x^2)/(1-x)^2. - Ralf Stephan, Mar 22 2004
a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, C(1/2, k)8^k})+0^n; a(n) = ((-1)^n/2^n)*(-3/4-(1/4)*sum{k=0..n, (-1)^(k-1)*2^k*(2k)!/((k!)^2*(2k-1))})+0^n. - Paul Barry, Jun 10 2005
Hankel determinant transform is 1-n. - Michael Somos, Sep 17 2006
a(n+1) = A126093(n,0). - Philippe Deléham, Mar 05 2007
a(n+1) has g.f. 1/(1-0*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(..... (continued fraction). - Paul Barry, Dec 02 2008
From Paul Barry, Jan 17 2009: (Start)
G.f.: x*c(x)/(1+x*c(x)), c(x) the g.f. of A000108;
a(n+1) = Sum_{k=0..n} (-1)^k*C(2n-k,n-k)*(k+1)/(n+1). (End)
a(n) = 3*(-1/2)^(n+1) + Gamma(n+1/2)*4^n*hypergeom([1, n+1/2],[n+2],-8) /(sqrt(Pi)*(n+1)!) (for n>0). - Mark van Hoeij, Nov 11 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i<=j), and A[i,j] = 0, otherwise. Then, for n>=1, a(n+1) = (-1)^n*charpoly(A,1). - Milan Janjic, Jul 08 2010
a(n) = the upper left term in M^n, n>0; where M = the infinite square production matrix:
0, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n+1) = Sum_{k=0..n} A039598(n,k)*(-2)^k. - Philippe Deléham, Nov 04 2011
D-finite with recurrence: 2*n*a(n) +(12-7*n)*a(n-1) +2*(3-2*n)*a(n-2)=0. - R. J. Mathar, Nov 15 2011
a(n) = sum(sum(2^(s-2n-2k)*(n/n+2k)binomial(n+2k, k)*binomial(s-n-1, s-2n-2k), (k=0, ..., floor((s-2n)/2)), (n=1, ..., s) with s>=2. - José Luis Ramírez Ramírez, Mar 22 2012
0 = a(n)*(16*a(n+1) + 22*a(n+2) - 20*a(n+3)) + a(n+1)*(34*a(n+1) + 53*a(n+2) - 38*a(n+3)) + a(n+2)*(10*a(n+2) + 4*a(n+3)) for all n in Z if we extend by a(0)=-1, a(-n) = -3/4 * (-2)^n if n>0. - Michael Somos, Jan 31 2014 [Corrected by Pontus von Brömssen, Aug 04 2022]
G.f. A(x) satisfies x*A'(x)/A(x) = x + 2*x^3 + 6*x^4 + 22*x^5 + ..., the o.g.f. for A072547. - Peter Bala, Oct 01 2015
a(n) = 2^n*(n-2)*(2*n-1)!!*(3*(n-1)*hypergeom([1,3-n], [3+n], 2)-n-2)/(n+2)! + 0^n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = binomial(2*n,n)*(hypergeom([1,(1-n)/2,1-n/2],[1-n,3/2-n],1)*3/(4-2/n)-1) for n>=2. - Peter Luschny, Oct 26 2015
O.g.f. A(x) satisfies 1 + A(x) = (1 + 3*Sum_{n >= 1} Catalan(n)*x^n)/(1 + 2*Sum_{n >= 1} Catalan(n)*x^n) = (1 + 2*Sum_{n >= 1} binomial(2*n,n)*x^n )/(1 + 3/2*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = Sum_{i=2..n-1} C(n-i-1)*(a(i)+a(i-1)), a(0)=0, a(1)=1, where C(n) = A000108(n). - Vladimir Kruchinin, Apr 23 2020

A002057 Fourth convolution of Catalan numbers: a(n) = 4*binomial(2*n+3,n)/(n+4).

Original entry on oeis.org

1, 4, 14, 48, 165, 572, 2002, 7072, 25194, 90440, 326876, 1188640, 4345965, 15967980, 58929450, 218349120, 811985790, 3029594040, 11338026180, 42550029600, 160094486370, 603784920024, 2282138106804, 8643460269248, 32798844771700, 124680849918352
Offset: 0

Views

Author

Keywords

Comments

a(n) is sum of the (flattened) list obtained by the iteration of: replace each integer k with the list 0,...,k+1 on the starting value 0. Length of this list is Catalan(n) or A000108. - Wouter Meeussen, Nov 11 2001
a(n-2) is the number of n-th generation vertices in the tree of sequences with unit increase labeled by 3 (cf. Zoran Sunic reference). - Benoit Cloitre, Oct 07 2003
Number of standard tableaux of shape (n+2,n-1). - Emeric Deutsch, May 30 2004
a(n) = CatalanNumber(n+3) - 2*CatalanNumber(n+2). Proof. From its definition as a convolution of Catalan numbers, a(n) counts lists of 4 Dyck paths of total size (semilength) = n. Connect the 4 paths by 3 upsteps (U) and append 3 downsteps (D). This is a reversible procedure. So a(n) is also the number of Dyck (n+3)-paths that end DDD (D for downstep). Let C(n) denote CatalanNumber(n) (A000108). Since C(n+3) is the total number of Dyck (n+3)-paths and C(n+2) is the number that end UD, we have (*) C(n+3) - C(n+2) is the number of Dyck (n+3)-paths that end DD. Also, (**) C(n+2) is the number of Dyck (n+3)-paths that end UDD (change the last D in a Dyck (n+2)-path to UDD). Subtracting (**) from (*) yields a(n) = C(n+3) - 2C(n+2) as claimed. - David Callan, Nov 21 2006
Convolution square of the Catalan sequence without one of the initial "1"'s: (1 + 4x + 14x^2 + 48x^3 + ...) = (1/x^2) * square(x + 2x^2 + 5x^3 + 14x^4 + ...)
a(n) is the number of binary trees with n+3 internal nodes in which both subtrees of the root are nonempty. Cf. A068875 [Sedgewick and Flajolet]. - Geoffrey Critzer, Jan 05 2013
With offset 4, a(n) is the number of permutations on {1,2,...,n} that are 123-avoiding, i.e., do not contain a three-term monotone subsequence, for which the first ascent is at positions (4,5); for example, there are 48 123-avoiding permutations on n=7 for which the first ascent is at spots (4,5). See Connolly link. There it is shown in general that the k-th Catalan Convolution is the number of 123-avoiding permutations for which the first ascent is at (k, k+1). (For n=k, the first ascent is defined to be at positions (k,k+1) if the permutation is the decreasing permutation with no ascents.) - Anant Godbole, Jan 17 2014
With offset 4, a(n) is the number of permutations on {1,2,...,n} that are 123-avoiding and for which the integer n is in the 4th spot; see Connolly link. - Anant Godbole, Jan 17 2014
a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that have exactly one east step below the subdiagonal y = x-1. Details can be found in Section 3.1 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that bounce off the diagonal y = x to the right exactly once but do not bounce off y = x to the left. Details can be found in Section 4.2 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
a(n) is the number of North-East lattice paths from (0,0) to (n+2,n+2) that horizontally cross the diagonal y = x exactly once but do not cross the diagonal vertically. Details can be found in Section 4.3 in Pan and Remmel's link. - Ran Pan, Feb 04 2016
Apparently also Young tableaux of (non-partition) shape [n+1, 1, 1, n+1], see example file. - Joerg Arndt, Dec 30 2023

Examples

			From _Peter Bala_, Apr 14 2017: (Start)
This sequence appears on the main diagonal of a generalized Catalan triangle. Construct a lower triangular array (T(n,k)), n,k >= 0 by placing the sequence [0,0,0,1,1,1,1,...] in the first column and then filling in the remaining entries in the array using the rule T(n,k) = T(n,k-1) + T(n-1,k). The resulting array begins
  n\k| 0 1  2  3  4   5   6   7  ...
  ---+-------------------------------
   0 | 0
   1 | 0 0
   2 | 0 0  0
   3 | 1 1  1  1
   4 | 1 2  3  4  4
   5 | 1 3  6 10 14  14
   6 | 1 4 10 20 34  48  48
   7 | 1 5 15 35 69 117 165 165
   ...
(see Tedford 2011; this is essentially the array C_4(n,k) in the notation of Lee and Oh). Compare with A279004. (End)
		

References

  • Pierre de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 11, coefficients of P_4(z).
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., Vol. 14 (1922), pp. 55-62, 122-138 and 143-146.
  • Robert Sedgewick and Phillipe Flajolet, Analysis of Algorithms, Addison Wesley, 1996, page 225.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

T(n, n+4) for n=0, 1, 2, ..., array T as in A047072. Also a diagonal of A059365 and of A009766.
Cf. A001003.
A diagonal of any of the essentially equivalent arrays A009766, A030237, A033184, A059365, A099039, A106566, A130020, A047072.
Cf. A145596 (row sums), A279004.

Programs

  • GAP
    List([0..25],n->4*Binomial(2*n+3,n)/(n+4)); # Muniru A Asiru, Mar 05 2018
    
  • Magma
    [4*Binomial(2*n+3,n)/(n+4): n in [0..30]]; // Vincenzo Librandi, Feb 04 2016
    
  • Maple
    a := n -> 32*4^n*GAMMA(5/2+n)*(1+n)/(sqrt(Pi)*GAMMA(5+n)):
    seq(a(n),n=0..23); # Peter Luschny, Dec 14 2015
    A002057List := proc(m) local A, P, n; A := [1]; P := [1,1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A002057List(27); # Peter Luschny, Mar 26 2022
  • Mathematica
    Table[Plus@@Flatten[Nest[ #/.a_Integer:> Range[0, a+1]&, {0}, n]], {n, 0, 10}]
    Table[4 Binomial[2n+3,n]/(n+4),{n,0,30}] (* or *) CoefficientList[ Series[ (1-Sqrt[1-4 x]+2 x (-2+Sqrt[1-4 x]+x))/(2 x^4),{x,0,30}],x] (* Harvey P. Dale, May 05 2011 *)
  • PARI
    {a(n) = if( n<0, 0, n+=2; 2*binomial(2*n, n-2) / n)}; /* Michael Somos, Jul 31 2005 */
    
  • PARI
    x='x+O('x^100); Vec((1-(1-4*x)^(1/2)+2*x*(-2+(1-4*x)^(1/2)+x))/(2*x^4)) \\ Altug Alkan, Dec 14 2015
    
  • SageMath
    [2*(n+1)*catalan_number(n+2)/(n+4) for n in (0..30)] # G. C. Greubel, May 27 2022

Formula

a(n) = A033184(n+4, 4) = 4*binomial(2*n+3, n)/(n+4) = 2*(n+1)*A000108(n+2)/(n+4).
G.f.: c(x)^4 with c(x) g.f. of A000108 (Catalan).
Row sums of A145596. Column 4 of A033184. By specializing the identities for the row polynomials given in A145596 we obtain the results a(n) = Sum_{k = 0..n} (-1)^k*binomial(n+1,k+1)*a(k)*4^(n-k) and a(n) = Sum_{k = 0..floor(n/2)} binomial(n+1,2*k+1) * Catalan(k+1) * 2^(n-2*k). From the latter identity we can derive the congruences a(2n+1) == 0 (mod 4) and a(2n) == Catalan(n+1) (mod 4). It follows that a(n) is odd if and only if n = (2^m - 4) for some m >= 2. - Peter Bala, Oct 14 2008
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=3, a(n-3) = (-1)^(n-3) * coeff(charpoly(A,x), x^3). - Milan Janjic, Jul 08 2010
G.f.: (1-sqrt(1-4*x) + 2*x*(-2+sqrt(1-4*x) + x))/(2*x^4). - Harvey P. Dale, May 05 2011
a(n+1) = A214292(2*n+4,n). - Reinhard Zumkeller, Jul 12 2012
D-finite with recurrence: (n+4)a(n) = 8*(2*n-1)*a(n-3) - 20*(n+1)*a(n-2) + 4*(2*n+5)*a(n-1). - Fung Lam, Jan 29 2014
D-finite with recurrence: (n+4)*a(n) - 2*(3*n+7)*a(n-1) + 4*(2*n+1)*a(n-2) = 0. - R. J. Mathar, Jun 03 2014
Asymptotics: a(n) ~ 4^(n+3)/sqrt(4*Pi*n^3). - Fung Lam, Mar 31 2014
a(n) = 32*4^n*Gamma(5/2+n)*(1+n)/(sqrt(Pi)*Gamma(5+n)). - Peter Luschny, Dec 14 2015
a(n) = C(n+1) - 2*C(n) where C is Catalan number A000108. Yuchun Ji, Oct 18 2017 [Note: Offset is off by 2]
E.g.f.: d/dx ( 2*exp(2*x)*BesselI(2,2*x)/x ). - Ilya Gutkovskiy, Nov 01 2017
From Bradley Klee, Mar 05 2018: (Start)
With F(x) = 16/(1+sqrt(1-4*x))^4 g.f. of A002057, xi(x) = F(x/4)*(x/4)^2, K(16*x) = 2F1(1/2,1/2;1;16*x) g.f. of A002894, q(x) g.f. of A005797, and q'(x) g.f. of A274344:
K(x) = (1+sqrt(xi(x)))*K(xi(x)).
2*K(1-x) = (1+sqrt(xi(x)))*K(1-xi(x)).
q(x) = sqrt(q(xi(16*x)/16)) = q'(xi(16*x)/16)/sqrt(xi(16*x)/16). (End)
From Amiram Eldar, Jan 02 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/4 + Pi/(18*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 183*log(phi)/(25*sqrt(5)) - 77/100, where phi is the golden ratio (A001622). (End)
a(n) = Integral_{x=0..4} x^n*W(x) dx where W(x) = -x^(3/2)*(1 - x/2)*sqrt(4 - x)/Pi, defined on the open interval (0,4). - Karol A. Penson, Nov 13 2022

A002420 Expansion of sqrt(1 - 4*x) in powers of x.

Original entry on oeis.org

1, -2, -2, -4, -10, -28, -84, -264, -858, -2860, -9724, -33592, -117572, -416024, -1485800, -5348880, -19389690, -70715340, -259289580, -955277400, -3534526380, -13128240840, -48932534040, -182965127280, -686119227300, -2579808294648, -9723892802904, -36734706144304
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Comments

Also expansion of complementary modulus k' in powers of m/4 = k^2/4.
Series reversion of x(Sum_{k>=0} a(k)x^(2k)) is x(Sum_{k>=0} C(2k)x^(2k)) where C() is Catalan numbers A000108.
The g.f. of the reciprocal sequence 1,-1/2,-1/2,... is F(1,1;-1/2;x/4). - Paul Barry, Sep 18 2008
Hankel transform is (2n+1)*(-2)^n or (-1)^n*A014480. - Paul Barry, Jan 22 2009
Equals polcoeff inverse of A000984. - Gary W. Adamson, Jun 02 2009
|a(n)| is the number of lattice paths in steps of (1,1) and (1,-1) that begin at the origin and end at (2n,0) but otherwise never touch (or cross) the x axis. Note the paths are in both the first and fourth quadrants. O.g.f. is 2xC(x)+1 where C(x) is the o.g.f. for A000108 (Catalan numbers). - Geoffrey Critzer, Jan 17 2012

Examples

			sqrt(1 - 4*x) = 1 - 2*x - 2*x^2 - 4*x^3 - 10*x^4 - 28*x^5 - 84*x^6 - 264*x^7 - 858*x^8 - 2860*x^9 - ...
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 8.
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

Crossrefs

A068875 and A262543 are essentially the same sequence as this.

Programs

  • Magma
    [Binomial(2*n, n)/(1-2*n): n in [0..30]]; // G. C. Greubel, Aug 12 2018
    
  • Maple
    A002420:=n->binomial(2*n, n)/(1-2*n); seq(A002420(n), n=1..30); # Wesley Ivan Hurt, May 08 2014
  • Mathematica
    a[n_] := -2n(2n-2)! / n!^2; a[0] = 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 07 2011 *)
    Table[If[n==0,1,-2 CatalanNumber[n-1]], {n,0,27}] (* Peter Luschny, Feb 27 2017 *)
    CoefficientList[Series[Sqrt[1-4x],{x,0,30}],x] (* Harvey P. Dale, Jul 04 2017 *)
  • PARI
    {a(n) = binomial(2*n, n) / (1 - 2*n)} /* Michael Somos, Jul 12 2008 */
    
  • Sage
    [catalan_number(n)*((1+n)/(1-2*n)) for n in range(30)] # G. C. Greubel, Nov 26 2018

Formula

G.f.: sqrt(1-4*x) = 1F0(-1/2;;4*x).
a(n) = binomial(2*n, n)/(1-2*n).
a(n) ~ -(1/2)*Pi^(-1/2)*n^(-3/2)*2^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 06 2002
0 = 16 * a(n) * a(k) * a(n+k+1) - 8 * a(n) * a(k) * a(n+k+2) + a(n+1) * a(k) * a(n+k+2) - a(n+1) * a(k+1) * a(n+k+1) + a(n) * a(k+1) * a(n+k+2) for all n and k. - Michael Somos, Jul 12 2008
G.f.: 2F1(1,-1/2;1;4x). - Paul Barry, Jan 22 2009
a(n) = (-1)^n * binomial(1/2,n)*4^n. - Vladimir Kruchinin, May 22 2011
G.f.: A(x) = (1-4*x)^(1/2) = 1 - 2*x - 2*x^2/G(0); G(k) = 1 - 2*x - x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 05 2011
D-finite with recurrence: n*a(n) +2*(3-2*n)*a(n-1)=0. - R. J. Mathar, Dec 19 2011
E.g.f.: a(n) = (-1)^n*n!* [x^n] exp(-2*x)*((1 + 4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). -Peter Luschny, Aug 25 2012
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: 2*G(0) - 1, where G(k) = 2*x*(2*k+1) + (k+1) - 2*x*(k+1)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 02 2013
a(n) = 4^n * binomial(n-3/2, -3/2). - Peter Luschny, May 06 2014
a(n) = 4^n*hypergeom([-n,3/2],[1],1). - Peter Luschny, Apr 26 2016
From Amiram Eldar, Mar 24 2022: (Start)
Sum_{n>=0} 1/a(n) = -2*Pi/(9*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 32/25 - 12*log(phi)/(25*sqrt(5)), where phi is the golden ratio (A001622). (End)
From Peter Bala, Mar 31 2024: (Start)
a(n) = (4^n)*Sum_{k = 0..2*n} (-1)^k*binomial(1/2, k)*binomial(1/2, 2*n - k).
(4^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
(1/2)*Sum_{k = 0..n} a(k)*a(2*n-k) = (Catalan(n-1))^2 = A001246(n) for n >= 1.
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 0 for n >= 1. (End)

Extensions

Additional comments from Michael Somos, Dec 13 2002

A081696 Expansion of 1/(x + sqrt(1-4x)).

Original entry on oeis.org

1, 1, 3, 9, 29, 97, 333, 1165, 4135, 14845, 53791, 196417, 721887, 2667941, 9907851, 36950465, 138320021, 519515209, 1957091277, 7392602917, 27992976565, 106236268337, 404005515873, 1539293204549, 5875059106769, 22459721336977
Offset: 0

Views

Author

Emanuele Munarini, Apr 02 2003

Keywords

Comments

Number of irreducible ordered pairs of compositions of n. A pair of compositions of n into the same number of (positive) parts, say n = a1 + ... + ak and n = b1 + ... + bk, is irreducible if for all j < k, a1 + ... + aj is not equal to b1 + ... + bj. E.g., a(3)=3 because the irreducible pairs are (1+2,2+1), (2+1,1+2), (3,3). - Herbert S. Wilf, May 22 2004
Hankel transform is 2^n. - Paul Barry, Nov 22 2007
Equals left border of triangle A152229. - Gary W. Adamson, Nov 29 2008
Equals INVERTi transform of A000984: (1, 2, 6, 20, 70, 252, ...). - Gary W. Adamson, May 15 2009
(1 + 3x + 9x^2 + 29x^3 + ...) * 1/(1 + x + 3x^2 + 9x^3 + 29x^4 + ...) = (1 + 2x + 4x^2 + 10x^3 + 28x^4 + ...); where A068875 = (1, 2, 4, 10, 28, ...). - Gary W. Adamson, Nov 21 2011
Apparently the number of grand Motzkin paths of length n with two types of flat step (F,f) and avoiding F at level 0. - David Scambler, Jul 04 2013
Starting at n=1 p-INVERT of Catalan numbers (A000108, starting at n=0), where p(S) = 1 - S - S^2; see A289780. - Clark Kimberling, Aug 12 2017

Crossrefs

Programs

  • Mathematica
    y[n_] := y[n] = (2*(4*n - 3)*y[n - 1] - (15*n - 24)*y[n - 2] - (4*n - 6)*y[n - 3])/n; y[0] = 1; y[1] = 1; y[2] = 3; (* corrected by Wouter Meeussen, Apr 30 2011 *)
    CoefficientList[Series[1/(x+Sqrt[1-4x] ),{x,0,30}],x] (* Harvey P. Dale, May 05 2021 *)
  • Maxima
    makelist(sum(binomial(2*n-k,n+k)*(3*k+1)/(n+k+1),k,0,n),n,0,12); /* Emanuele Munarini, Apr 02 2011 */
    
  • PARI
    x='x+O('x^66); Vec(1/(x+sqrt(1-4*x))) \\ Joerg Arndt, Jul 06 2013

Formula

G.f.: 1/(x + sqrt(1-4*x)).
D-finite with recurrence: n*a(n) + 2*(-4*n+3)*a(n-1) + 3*(5*n-8)*a(n-2) + 2*(2*n-3)*a(n-3) = 0.
a(n) = Sum_{k=0..n} binomial(2n-k,n+k)*(3k+1)/(n+k+1). - Emanuele Munarini, Apr 02 2011
From Paul Barry, Dec 18 2004: (Start)
A Catalan transform of the Fibonacci numbers F(n+1) under the mapping G(x) -> G(xc(x)), c(x) the g.f. of A000108. The inverse mapping is H(x) -> H(x(1-x)).
a(n) = Sum{k=0..n} (k/(2n-k))binomial(2n-k, n-k)F(k+1). (End)
From Bill Gosper, May 14 2011: (Start)
We have (per Wouter Meeussen): a(n) = (Sum_{k=1..n} k*Fibonacci(k+1)*(-1)^(n+k)*binomial(-n,n-k))/n = (Sum_{k=1..n} k*Fibonacci(k+1)*binomial(2*n-k-1,n-1))/n.
If we introduce an alternating sign, defining b(n) = (Sum_{k=1..n} k*Fibonacci(k+1)*binomial(-n,n-k))/n = (Sum_{k=1..n} k*Fibonacci(k+1)*(-1)^(n+k)*binomial(2*n-k-1,n-1))/n, then b(n) = 1 for all n. (Not obvious--I proved it satisfies b(n+2) = ((17*n^2 + 37*n + 18)*b(n+1) - 4*(2*n+1)*(2*n+3)*b(n))/((n+2)*(n+3)).) (End)
G.f.: 1/(1-x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction). - Paul Barry, Aug 03 2009
From Gary W. Adamson, Jul 11 2011: (Start)
a(n) = the upper left term in M^n, M = an infinite square production matrix in which a column of (1,2,2,2,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros:
1, 1, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, ...
2, 1, 1, 1, 0, 0, ...
2, 1, 1, 1, 1, 0, ...
2, 1, 1, 1, 1, 1, ...
... (End)

Extensions

More terms from Paul Barry, Dec 18 2004
Wouter credited with first sums in Gosper's FORMULA Comment, which were mistyped by NJAS (caught by Julian Ziegler Hunts), May 14 2011

A052718 E.g.f. 1 - x - sqrt(1-4*x).

Original entry on oeis.org

0, 1, 4, 24, 240, 3360, 60480, 1330560, 34594560, 1037836800, 35286451200, 1340885145600, 56317176115200, 2590590101299200, 129529505064960000, 6994593273507840000, 405686409863454720000, 25152557411534192640000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{B=Union(Z,C),C=Prod(B,B),S=Union(B,C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    s=2;lst={0, 1};Do[s+=n*s+s;AppendTo[lst, s], {n, 0, 5!, 4}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    With[{nn = 50}, CoefficientList[Series[1 - x - Sqrt[1 - 4*x], {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, Feb 16 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(1-x-sqrt(1-4*x)))) \\ G. C. Greubel, Feb 16 2017

Formula

a(0)=0, a(1)=1, a(n) = 2^(2n-1) * Gamma(n-1/2) / sqrt(Pi) for n>=2. - Jon E. Schoenfield, Jan 11 2015
D-finite with recurrence: a(1)=1; a(2)=4; (2-4*n)*a(n) + a(n+1) = 0.
O.g.f.: 1-x-2F_0(-1/2,1;;4*x). - _R. J. Mathar, Feb 23 2010
G.f.: 1-x - G(0)/2, where G(k)= 1 + 1/(1 - x*(4*k-2)/(x*(4*k-2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 04 2013
a(n) = n!*A068875(n-1). - R. J. Mathar, Oct 18 2013

A071721 Expansion of (1+x^2*C^2)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 2, 6, 18, 56, 180, 594, 2002, 6864, 23868, 83980, 298452, 1069776, 3863080, 14040810, 51325650, 188574240, 695987820, 2579248980, 9593714460, 35804293200, 134032593240, 503154100020, 1893689067348, 7144084508256
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Comments

a(n) = A138156(n) - 4*A138156(n-1). - Alzhekeyev Ascar M, Jul 19 2011
Apparently, for n>=1, the sum of the heights of the first and last peaks in all Dyck n-paths (in paths with one peak the height counts as both first and last). - David Scambler, Oct 05 2012
For n>=1, a(n) is the total number of nonempty subtrees over all binary trees having n+1 internal nodes. Here, a binary tree is a full (each node has two or zero children), rooted, plane (ordered), unlabeled tree. An empty subtree is a tree attached to the root that consists only of an external node. a(n) = 2*A002057(n-2) + A068875(n). - Geoffrey Critzer, Sep 16 2013
From Colin Defant, Sep 15 2018: (Start)
a(n) is the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 231, 312, and 321, where s denotes West's stack-sorting map.
a(n) is the number of permutations on [n+1] that avoid the patterns 1342, 2341, 3142, 3241, 3412, and 3421. (End)

Examples

			G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 56*x^4 + 180*x^5 + 594*x^6 + 2002*x^7 + ... - _Michael Somos_, Apr 22 2022
		

Crossrefs

Row sums of triangles A319251, A319252.
gf=(1+x^2*C^2)*C^m: A000782 (m=1), this sequence (m=2), A071722 (m=3), A071723 (m=4).

Programs

  • Maple
    a := n -> `if`(n=0, 1, 6*binomial(2*n, n-1)/(n+2));
    seq(a(n), n=0..24); # Peter Luschny, Jun 28 2018
  • Mathematica
    Join[{1},Table[6n CatalanNumber[n]/(n+2),{n,30}]] (* Harvey P. Dale, Jun 05 2012 *)
    nn=20;t=(1-(1-4x)^(1/2))/(2x);CoefficientList[Series[D[1+x (y t -y+1)^2,y]/.y->1,{x,0,nn}],x] (* Geoffrey Critzer, Sep 16 2013 *)
  • PARI
    {a(n) = if(n<1, n==0, 6*n*(2*n)!/(n!*(n + 1)!*(n + 2)))}; /* Michael Somos, Apr 22 2022 */
  • Sage
    a = lambda n: n*(n+1)*hypergeometric([1-n, 2-n], [4], 1) if n>0 else 1
    [simplify(a(n)) for n in range(25)] # Peter Luschny, Nov 19 2014
    

Formula

a(n) = 6n * (2n)! / [(n+2)n!(n+1)! ], n>0. In terms of Catalan numbers (A000108), a(n) = 6n*Cat(n)/(n+2), n>0. - Ralf Stephan, Mar 11 2004
a(n) = n*(n+1)*hypergeom([1-n, 2-n], [4], 1) for n>=1. - Peter Luschny, Nov 19 2014
D-finite with recurrence -(n+2)*(n-1)*a(n) +2*n*(2*n-1)*a(n-1)=0. - R. J. Mathar, Jul 18 2017
a(n) = 2*Cat(n+1) - 2*Cat(n) = 2*A000245(n) for n>=1. - Colin Defant, Jun 27 2018
From Amiram Eldar, Mar 22 2022: (Start)
Sum_{n>=0} 1/a(n) = 23/18 + 7*Pi/(27*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 43/50 - 82*sqrt(5)*log(phi)/375, where phi is the golden ratio (A001622). (End)
From Michael Somos, Apr 22 2022: (Start)
G.f.: (1 - 3*x + x^2 - (1 - x) * sqrt(1 - 4*x))/x^2.
G.f.: (2 - 2*x + x^2)/(1 - 3*x + x^2 + (1 - x)*sqrt(1 - 4*x)).
G.f.: 1 + 1/((1 - x)/(1 - sqrt(1 - 4*x)) - 1/2).
a(n) = b(n+1) - b(n) for all n in Z if b(0) = 2, b(-1) = -1, a(0) = 0, a(-1) = 3, a(-2) = -1 where b = A068875.
0 = a(n)*(+16*a(n+1) -58*a(n+2) +18*a(n+3)) +a(n+1)*(+18*a(n+1) +15*a(n+2) -13*a(n+3)) +a(n+2)*(+3*a(n+2) +a(n+3)) for all n in Z if a(0) = 0, a(-1) = 3, a(-2) = -1. (End)
Showing 1-10 of 23 results. Next