A071686
Smallest solution to gcd(x, Rev(x)) = 2^n.
Original entry on oeis.org
2, 4, 8, 2192, 21920, 291008, 610688, 2112256, 2131456, 2937856, 25329664, 230465536, 694018048, 2344321024, 4688642048, 2112421888, 65012891648, 650128916480, 4494196736, 63769149440, 637691494400, 23842827272192, 276298064723968, 420127895977984, 4897795987210240
Offset: 1
-
a[n_] := Block[{k = 2^n}, While[GCD[k, FromDigits@ Reverse@ IntegerDigits@ k] != 2^n, k += 2^n]; k]; Array[a, 17] (* Giovanni Resta, Nov 14 2019 *)
A072005
Smallest solution to gcd(k, reverse(k)) = 3^n.
Original entry on oeis.org
1, 3, 9, 2889, 2899999989, 4899999987, 19899999972, 29898999693, 49989958299, 49999917897, 99884394999, 372797889885, 1989767716659, 2678052898989, 17902896898419, 137530987695297, 189281899170567, 368055404997498, 14048104419899757, 437893473401621955, 218264275944702783
Offset: 0
n=4: 3^4 = 81, a(4) = 2899999989 = 3*3*3*3*35802469, reverse(a(4)) = 2*3*3*3*3*61111111; gcd = 81 = 3^n.
A072021
Smallest solution to gcd(x, reverse(x)) = 5^n.
Original entry on oeis.org
5, 5200, 521000, 5213750, 521875, 5218750, 52130234375, 5734841796875, 57869714843750, 526046650390625, 5265674365234375, 52187008544921875, 526515306396484375, 5213023309008789062500, 5213596736358642578125, 5260466086273193359375, 526041911745452880859375
Offset: 1
For n = 4, gcd(521875, 578125) = 3125 = 5^4.
For n = 8, a(8) = 5734841796875 = 5^9*2936239, reverse(a(8)) = 5786971484375 = 5^8*71*208657.
-
a(n) = {my(k = 1); while (gcd(k, fromdigits(Vecrev(digits(k)))) != 5^n, k++); k;} \\ Michel Marcus, Jul 13 2018
A072016
Numbers k such that gcd(k, reverse(k)) = 27 = 3^3, where reverse(x) = A004086(x).
Original entry on oeis.org
2889, 3699, 3888, 3969, 4779, 4887, 5589, 5697, 5778, 5859, 5886, 5967, 6399, 6669, 6777, 6885, 6939, 7398, 7479, 7587, 7668, 7695, 7749, 7776, 7857, 7884, 7938, 7965, 8289, 8397, 8559, 8667, 8775, 8829, 8883, 8937, 9099, 9288, 9369, 9396, 9477, 9558, 9585
Offset: 1
2889 = 107*3*3*3, 9889 = 3*3*3*3*2*61.
-
[n: n in [1..10^4] | Gcd(n,Seqint(Reverse(Intseq(n)))) eq 27]; // Vincenzo Librandi, Jul 11 2018
-
Select[Range[10^4], GCD[#, FromDigits[Reverse[IntegerDigits[#]]]] == 27 &] (* Vincenzo Librandi, Jul 11 2018 *)
-
isok(n) = gcd(n, fromdigits(Vecrev(digits(n)))) == 27; \\ Michel Marcus, Jul 11 2018
A072050
Smallest solution to GCD(x,A004086(x))=7^n.
Original entry on oeis.org
7, 18718, 343, 125204947, 231012215, 11298657013, 211066659013, 117088913464607, 2846847905744815, 108244538579770418, 2080795357577501075, 18312871825384462928, 26268977180287044053417, 1734582041294009627423816
Offset: 1
A333666
Smallest k > 0 with gcd(k, rev(k)) = n, where rev(k) is digit reversal of k and with sum of digits of k = n, or 0 if no such k exists.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 209, 48, 4000009, 21182, 5055, 21184, 13328, 288, 12844, 0, 1596, 2398, 13892, 2976, 52675, 45890, 2889, 61768, 178292, 0, 177475, 29984, 42999, 279718, 529865, 29988, 1009009009009, 485678, 1951599, 0, 694499, 655998, 1677688, 658988
Offset: 1
a(11) = 209. The sum of the digits is 11 and gcd(209,902) = 11.
a(12) = 48. The sum of the digits is 12 and gcd(48,84) = 12.
-
m = 36; s = Table[0, {m}]; c = 0; n = 1; While[c < m - Quotient[m, 10], g = GCD[n, FromDigits @ Reverse @ (d = IntegerDigits[n])]; If[g <= m && g == Plus @@ d && s[[g]] == 0, c++; s[[g]] = n]; n++]; s (* Amiram Eldar, Sep 03 2020 *)
-
a(n) = {if ((n % 10) == 0, return(0)); my(k=n); while (! ((sumdigits(k)==n) && (gcd(k, fromdigits(Vecrev(digits(k)))) == n)), k+=n); k;} \\ Michel Marcus, Sep 03 2020
-
for n in range(11, 20):
for k in range(n, 1000000000, n):
s = str(k)
revk = "" # digit reversal of k
sum = 0
for i in range(len(s)):
revk = revk + s[len(s) - i - 1]
sum = sum + int(s[i])
g = gcd(k,int(revk))
if g == n and sum == n:
print(n, k, revk, g)
break
A072018
Numbers k for which gcd(k, reverse(k)) = 243 = 3^5.
Original entry on oeis.org
4899999987, 4989999897, 4999889997, 4999997889, 5889998997, 5889999969, 5898989997, 5898998988, 5899899789, 5899979979, 5899987998, 5899989699, 5899996989, 5979999879, 5988899997, 5988998898, 5989889979, 5989897998
Offset: 1
k = 4899999987 = 3*3*3*3*3*157*128437 and reverse(k) = 78999999984 = 2*2*2*2*3*3*3*3*3*3*2031893, gcd = 243. Numerous but not all solutions are obtained by inserting strings of 9's between digits of A071016. Further such regular transformations exist.
A071685
Non-palindromic numbers n, not divisible by 10, such that either n divides R(n) or R(n) divides n, where R(n) is the digit-reversal of n.
Original entry on oeis.org
1089, 2178, 8712, 9801, 10989, 21978, 87912, 98901, 109989, 219978, 879912, 989901, 1099989, 2199978, 8799912, 9899901, 10891089, 10999989, 21782178, 21999978, 87128712, 87999912, 98019801, 98999901, 108901089, 109999989
Offset: 1
Palindromic solutions like 12021 or also solutions divisible by 10 were filtered out like {8380,838; q=10} or {8400,48; q=175}. In case of m>R(m), q=m/R(m)=4 or 9.
-
nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[IntegerDigits[x]] Do[s=Mod[Max[{n, tn[red[n]]}], Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[Mod[n, 10], 0] &&!Equal[n, r], Print[{n, r/n}]], {n, 1, 1000000}]
npnQ[n_]:=Module[{r=IntegerReverse[n]},!PalindromeQ[n]&&!Divisible[ n,10] &&(Mod[n,r]==0||Mod[r,n]==0)]; Select[Range[11*10^7],npnQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 13 2017 *)
A071687
Non-palindromic numbers such that either x=q1.Rev[x] or Rev[x]=q2.x, where R[x]=A004086[x] and q1 or q2 are integers not divisible by 10.
Original entry on oeis.org
510, 540, 810, 1089, 2100, 2178, 4200, 5200, 5610, 5700, 5940, 6300, 8400, 8712, 8910, 9801, 10989, 21978, 23100, 27000, 46200, 51510, 52200, 52800, 54540, 56610, 57200, 59940, 65340, 69300, 81810, 87912, 89910, 98901, 109989, 212100, 217800
Offset: 1
Includes special cases of A071685. Examples represented by {n, Rev[n], integer-quotient} triples: {1089, 9801, 9}, {87912, 21979, 4}, {5610, 165, 34}, {610000, 16, 38125}, etc.
-
nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[ed[x]] Do[s=Mod[ma=Max[{n, tn[red[n]]}], mi=Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[n, r] &&!Equal[Mod[ma/mi, 10], 0], Print[{n, r, Max[r/n, n/r]}]], {n, 1, 1000000}]
A072017
Numbers k such that gcd(k, reverse(k)) = 81 = 3^4, where reverse(x) = A004086(x).
Original entry on oeis.org
2899999989, 2989999899, 2999889999, 3799999899, 3898989999, 3899799999, 3899999988, 3979989999, 3988899999, 3989999898, 3989999979, 3998999889, 3999889998, 3999898989, 3999899799, 3999979989, 3999988899, 4699998999
Offset: 1
k = 3*3*3*3*3*449*64157 and reverse(k) = 2*2*3*3*3*3*31*67*14827, GCD = 81.
Showing 1-10 of 12 results.
Comments