cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A086331 Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 2, 7, 43, 393, 4721, 69853, 1225757, 24866481, 572410513, 14738647221, 419682895325, 13094075689225, 444198818128313, 16278315877572141, 640854237634448101, 26973655480577228769, 1208724395795734172705, 57453178877303382607717, 2887169565412587866031533
Offset: 0

Views

Author

Vladeta Jovovic, Sep 01 2003

Keywords

Comments

Binomial transform of A000312. - Tilman Neumann, Dec 13 2008
a(n) is the number of partial functions on {1,2,...,n} that are endofunctions. See comments in A000169 and A126285 by Franklin T. Adams-Watters. - Geoffrey Critzer, Dec 19 2011

Examples

			a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(binomial(n,k)*k^k, k=0..n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 30 2021
  • Mathematica
    nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[x]/(1-t),{x,0,nn}],x]  (* Geoffrey Critzer, Dec 19 2011 *)
  • PARI
    a(n) = sum(k=0,n, binomial(n, k)*k^k ); \\ Joerg Arndt, May 10 2013
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*k^k.
a(n) ~ e^(1/e)*n^n * (1 + 1/(2*e*n)) ~ 1.444667861... * n^n. - Vaclav Kotesovec, Nov 27 2012
G.f.: Sum_{k>=0} (k * x)^k/(1 - x)^(k+1). - Seiichi Manyama, Jul 04 2022

A003725 E.g.f.: exp( x * exp(-x) ).

Original entry on oeis.org

1, 1, -1, -2, 9, -4, -95, 414, 49, -10088, 55521, -13870, -2024759, 15787188, -28612415, -616876274, 7476967905, -32522642896, -209513308607, 4924388011050, -38993940088199, 11731860520780, 3807154270837281
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. this sequence (k=1), A292909 (k=2), A292910 (k=3), A292912 (k=4).

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x Exp[-x]],{x,0,nn}],x]Range[0,nn]!] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    Vec(serlaplace(exp(exp(-x) * x))) \\ Charles R Greathouse IV, Sep 26 2017

Formula

a(n) = Sum_{k=0..n} (-k)^(n-k)*binomial(n, k). - Vladeta Jovovic, Mar 15 2003
First column of A215652. - Peter Bala, Sep 14 2012
G.f.: Sum_{k>=0} x^k/(1 + k*x)^(k+1). - Ilya Gutkovskiy, Jun 25 2018

A277473 E.g.f.: -exp(x)*LambertW(-x).

Original entry on oeis.org

0, 1, 4, 18, 116, 1060, 12702, 187810, 3296120, 66897288, 1540762010, 39693752494, 1130866726596, 35300006582620, 1198036854980630, 43921652697277170, 1729775120233353968, 72831210167041246480, 3264674481128340280242, 155220967397580333229270
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2016

Keywords

Crossrefs

Partial sums of A038051.

Programs

  • Mathematica
    CoefficientList[Series[-Exp[x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]!
    Table[Sum[Binomial[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(-exp(x)*lambertw(-x)))) \\ G. C. Greubel, Jun 11 2017

Formula

a(n) = Sum_{k=1..n} binomial(n,k) * k^(k-1).
a(n) ~ exp(exp(-1)) * n^(n-1).

A277464 Expansion of e.g.f. cosh(x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 1, 5, 30, 281, 3400, 50557, 890120, 18101617, 417464064, 10764826421, 306893014912, 9584448407305, 325407839778944, 11933432488693549, 470087171351873280, 19796492491889197025, 887518214183286390784, 42202928616264032249701, 2121583256369642798845952
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Cosh[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
    Table[(1+(-1)^n + Sum[(1+(-1)^(n-k)) * Binomial[n,k] * k^k, {k, 1, n}])/2, {n, 0, 25}]
  • PARI
    x='x+O('x^50); Vec(serlaplace(cosh(x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(n-2*k)*binomial(n, 2*k)); \\ Seiichi Manyama, Feb 15 2023

Formula

a(n) ~ cosh(exp(-1)) * n^n.
a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(n-2*k) * binomial(n,2*k). - Seiichi Manyama, Feb 15 2023

A277463 E.g.f.: sinh(x)/(1+LambertW(-x)).

Original entry on oeis.org

0, 1, 2, 13, 112, 1321, 19296, 335637, 6764864, 154946449, 3973820800, 112789880413, 3509627281920, 118790978349369, 4344883388878592, 170767066282574821, 7177162988688031744, 321206181612447781921, 15250250261039350358016, 765586309042945067185581
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Sinh[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
    Table[(1-(-1)^n + Sum[(1-(-1)^(n-k)) * Binomial[n,k] * k^k, {k, 1, n}])/2, {n, 0, 25}]
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(sinh(x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 05 2017

Formula

a(n) ~ sinh(exp(-1)) * n^n.

A290158 a(n) = n! * [x^n] exp(-n*x)/(1 + LambertW(-x)).

Original entry on oeis.org

1, 0, 4, -9, 208, -1525, 33516, -463099, 11293248, -231839577, 6517863100, -175791146311, 5723314711632, -189288946716181, 7083626583237036, -275649085963046475, 11724766124450058496, -522717581675749841713, 24981438186138642481404
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 06 2017

Keywords

Comments

The n-th term of the n-th inverse binomial transform of A000312.

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[-n x]/(1 + LambertW[-x]), {x, 0, n}], {n, 0, 18}]
  • PARI
    a(n) = (-1)^n*n!*sum(k=0, n\2, n^k*stirling(n-k, k, 2)/(n-k)!); \\ Seiichi Manyama, May 05 2023

Formula

a(n) ~ (-1)^n * n^n / (1 + LambertW(1)). - Vaclav Kotesovec, Oct 06 2017
From Seiichi Manyama, May 05 2023: (Start)
a(n) = (-1)^n * n! * [x^n] exp(n * x * (exp(x) - 1)).
a(n) = (-1)^n * n! * Sum_{k=0..floor(n/2)} n^k * Stirling2(n-k,k)/(n-k)!.
a(n) = [x^n] Sum_{k>=0} (k*x)^k / (1 + n*x)^(k+1).
a(n) = Sum_{k=0..n} (-n)^(n-k) * k^k * binomial(n,k). (End)

A350212 Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 3, 0, 1, 17, 9, 0, 1, 169, 68, 18, 0, 1, 2079, 845, 170, 30, 0, 1, 31261, 12474, 2535, 340, 45, 0, 1, 554483, 218827, 43659, 5915, 595, 63, 0, 1, 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1, 262517615, 102030777, 19961388, 2625924, 261954, 21294, 1428, 108, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 19 2021

Keywords

Examples

			T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
Triangle T(n,k) begins:
         1;
         0,       1;
         3,       0,      1;
        17,       9,      0,      1;
       169,      68,     18,      0,     1;
      2079,     845,    170,     30,     0,   1;
     31261,   12474,   2535,    340,    45,   0,  1;
    554483,  218827,  43659,   5915,   595,  63,  0, 1;
  11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1;
  ...
		

Crossrefs

Columns k=0-1 give: |A069856|, A348590.
Row sums give A000312.
T(n+1,n-1) gives A045943.

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
          b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
    seq(T(n), n=0..10);
    # second Maple program:
    A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n):
    seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*
         b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)

Formula

Sum_{k=0..n} k * T(n,k) = A055897(n).
Sum_{k=1..n} T(n,k) = A350134(n).
From Mélika Tebni, Nov 24 2022: (Start)
T(n,k) = binomial(n, k)*|A069856(n-k)|.
E.g.f. column k: exp(-x)*x^k / ((1 + LambertW(-x))*k!).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*binomial(j, k)*binomial(n, j)*(n-j)^(n-j). (End)

A362019 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * Sum_{j=0..n} (-k*j)^j * binomial(n,j).

Original entry on oeis.org

1, 1, -1, 1, 0, 1, 1, 1, 3, -1, 1, 2, 13, 17, 1, 1, 3, 31, 173, 169, -1, 1, 4, 57, 629, 3321, 2079, 1, 1, 5, 91, 1547, 18025, 81529, 31261, -1, 1, 6, 133, 3089, 58993, 662639, 2443333, 554483, 1, 1, 7, 183, 5417, 147081, 2888979, 29752957, 86475493, 11336753, -1
Offset: 0

Views

Author

Seiichi Manyama, May 05 2023

Keywords

Examples

			Square array begins:
   1,    1,     1,      1,       1,       1, ...
  -1,    0,     1,      2,       3,       4, ...
   1,    3,    13,     31,      57,      91, ...
  -1,   17,   173,    629,    1547,    3089, ...
   1,  169,  3321,  18025,   58993,  147081, ...
  -1, 2079, 81529, 662639, 2888979, 8998399, ...
		

Crossrefs

Columns k=0..3 give A033999, (-1)^n * A069856(n), A362859, A362860.
Main diagonal gives A362862.
Cf. A362856.

Programs

  • PARI
    T(n, k) = (-1)^n*sum(j=0, n, (-k*j)^j*binomial(n, j));

Formula

E.g.f. of column k: exp(-x) / (1 + LambertW(-k*x)).
G.f. of column k: Sum_{j>=0} (k*j*x)^j / (1 + x)^(j+1).

A277474 E.g.f.: -exp(-x)*LambertW(-x).

Original entry on oeis.org

0, 1, 0, 6, 36, 380, 4830, 74382, 1342712, 27825912, 651274650, 16994464850, 489240628932, 15404364096420, 526634857318934, 19428038813967630, 769280055136105200, 32543192449030871792, 1464827827285673677746, 69903432558329996409642, 3525344776953738276010940
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-Exp[-x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]!
    Table[Sum[(-1)^(n-k)*Binomial[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
  • PARI
    x='x+O('x^50); concat([0], Vec(serlaplace(-exp(-x)*lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017

Formula

a(n) = Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(k-1).
a(n) ~ exp(-exp(-1)) * n^(n-1).

A350134 Number of endofunctions on [n] with at least one isolated fixed point.

Original entry on oeis.org

0, 1, 1, 10, 87, 1046, 15395, 269060, 5440463, 124902874, 3208994379, 91208536112, 2841279322871, 96258245162678, 3523457725743059, 138573785311560916, 5827414570508386335, 260928229315498155314, 12393729720071855683739, 622422708333615857463608
Offset: 0

Views

Author

Alois P. Heinz, Dec 15 2021

Keywords

Examples

			a(3) = 10: 123, 122, 133, 132, 121, 323, 321, 113, 223, 213.
		

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
    b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
          b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..23);
  • Mathematica
    g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
    b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
         b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1, n}]];
    a[n_] := b[n, 0];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)

Formula

a(n) = A000312(n) - abs(A069856(n)).
a(n) = Sum_{k=1..n} A350212(n,k).
Showing 1-10 of 20 results. Next