A086331
Expansion of e.g.f. exp(x)/(1 + LambertW(-x)).
Original entry on oeis.org
1, 2, 7, 43, 393, 4721, 69853, 1225757, 24866481, 572410513, 14738647221, 419682895325, 13094075689225, 444198818128313, 16278315877572141, 640854237634448101, 26973655480577228769, 1208724395795734172705, 57453178877303382607717, 2887169565412587866031533
Offset: 0
a(2) = 7 because {}->{}, 1->1, 2->2, and the four functions from {1,2} into {1,2}. Note A000169(2) = 9 because it counts these 7 and 1->2, 2->1.
-
a:= n-> add(binomial(n,k)*k^k, k=0..n):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 30 2021
-
nn=10;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[Series[Exp[x]/(1-t),{x,0,nn}],x] (* Geoffrey Critzer, Dec 19 2011 *)
-
a(n) = sum(k=0,n, binomial(n, k)*k^k ); \\ Joerg Arndt, May 10 2013
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x)^k/(1-x)^(k+1))) \\ Seiichi Manyama, Jul 04 2022
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x)*sum(k=0, N, (k*x)^k/k!))) \\ Seiichi Manyama, Jul 04 2022
A003725
E.g.f.: exp( x * exp(-x) ).
Original entry on oeis.org
1, 1, -1, -2, 9, -4, -95, 414, 49, -10088, 55521, -13870, -2024759, 15787188, -28612415, -616876274, 7476967905, -32522642896, -209513308607, 4924388011050, -38993940088199, 11731860520780, 3807154270837281
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A277473
E.g.f.: -exp(x)*LambertW(-x).
Original entry on oeis.org
0, 1, 4, 18, 116, 1060, 12702, 187810, 3296120, 66897288, 1540762010, 39693752494, 1130866726596, 35300006582620, 1198036854980630, 43921652697277170, 1729775120233353968, 72831210167041246480, 3264674481128340280242, 155220967397580333229270
Offset: 0
-
CoefficientList[Series[-Exp[x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]!
Table[Sum[Binomial[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
-
x='x+O('x^50); concat([0], Vec(serlaplace(-exp(x)*lambertw(-x)))) \\ G. C. Greubel, Jun 11 2017
A277464
Expansion of e.g.f. cosh(x)/(1 + LambertW(-x)).
Original entry on oeis.org
1, 1, 5, 30, 281, 3400, 50557, 890120, 18101617, 417464064, 10764826421, 306893014912, 9584448407305, 325407839778944, 11933432488693549, 470087171351873280, 19796492491889197025, 887518214183286390784, 42202928616264032249701, 2121583256369642798845952
Offset: 0
-
CoefficientList[Series[Cosh[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
Table[(1+(-1)^n + Sum[(1+(-1)^(n-k)) * Binomial[n,k] * k^k, {k, 1, n}])/2, {n, 0, 25}]
-
x='x+O('x^50); Vec(serlaplace(cosh(x)/(1 + lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
-
a(n) = sum(k=0, n\2, (n-2*k)^(n-2*k)*binomial(n, 2*k)); \\ Seiichi Manyama, Feb 15 2023
A277463
E.g.f.: sinh(x)/(1+LambertW(-x)).
Original entry on oeis.org
0, 1, 2, 13, 112, 1321, 19296, 335637, 6764864, 154946449, 3973820800, 112789880413, 3509627281920, 118790978349369, 4344883388878592, 170767066282574821, 7177162988688031744, 321206181612447781921, 15250250261039350358016, 765586309042945067185581
Offset: 0
-
CoefficientList[Series[Sinh[x]/(1+LambertW[-x]), {x, 0, 25}], x] * Range[0, 25]!
Table[(1-(-1)^n + Sum[(1-(-1)^(n-k)) * Binomial[n,k] * k^k, {k, 1, n}])/2, {n, 0, 25}]
-
x='x+O('x^50); concat([0], Vec(serlaplace(sinh(x)/(1 + lambertw(-x))))) \\ G. C. Greubel, Nov 05 2017
A290158
a(n) = n! * [x^n] exp(-n*x)/(1 + LambertW(-x)).
Original entry on oeis.org
1, 0, 4, -9, 208, -1525, 33516, -463099, 11293248, -231839577, 6517863100, -175791146311, 5723314711632, -189288946716181, 7083626583237036, -275649085963046475, 11724766124450058496, -522717581675749841713, 24981438186138642481404
Offset: 0
-
Table[n! SeriesCoefficient[Exp[-n x]/(1 + LambertW[-x]), {x, 0, n}], {n, 0, 18}]
-
a(n) = (-1)^n*n!*sum(k=0, n\2, n^k*stirling(n-k, k, 2)/(n-k)!); \\ Seiichi Manyama, May 05 2023
A350212
Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 3, 0, 1, 17, 9, 0, 1, 169, 68, 18, 0, 1, 2079, 845, 170, 30, 0, 1, 31261, 12474, 2535, 340, 45, 0, 1, 554483, 218827, 43659, 5915, 595, 63, 0, 1, 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1, 262517615, 102030777, 19961388, 2625924, 261954, 21294, 1428, 108, 0, 1
Offset: 0
T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
Triangle T(n,k) begins:
1;
0, 1;
3, 0, 1;
17, 9, 0, 1;
169, 68, 18, 0, 1;
2079, 845, 170, 30, 0, 1;
31261, 12474, 2535, 340, 45, 0, 1;
554483, 218827, 43659, 5915, 595, 63, 0, 1;
11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..10);
# second Maple program:
A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n):
seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*
b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)
A362019
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * Sum_{j=0..n} (-k*j)^j * binomial(n,j).
Original entry on oeis.org
1, 1, -1, 1, 0, 1, 1, 1, 3, -1, 1, 2, 13, 17, 1, 1, 3, 31, 173, 169, -1, 1, 4, 57, 629, 3321, 2079, 1, 1, 5, 91, 1547, 18025, 81529, 31261, -1, 1, 6, 133, 3089, 58993, 662639, 2443333, 554483, 1, 1, 7, 183, 5417, 147081, 2888979, 29752957, 86475493, 11336753, -1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, 0, 1, 2, 3, 4, ...
1, 3, 13, 31, 57, 91, ...
-1, 17, 173, 629, 1547, 3089, ...
1, 169, 3321, 18025, 58993, 147081, ...
-1, 2079, 81529, 662639, 2888979, 8998399, ...
-
T(n, k) = (-1)^n*sum(j=0, n, (-k*j)^j*binomial(n, j));
A277474
E.g.f.: -exp(-x)*LambertW(-x).
Original entry on oeis.org
0, 1, 0, 6, 36, 380, 4830, 74382, 1342712, 27825912, 651274650, 16994464850, 489240628932, 15404364096420, 526634857318934, 19428038813967630, 769280055136105200, 32543192449030871792, 1464827827285673677746, 69903432558329996409642, 3525344776953738276010940
Offset: 0
-
CoefficientList[Series[-Exp[-x]*LambertW[-x], {x, 0, 20}], x] * Range[0, 20]!
Table[Sum[(-1)^(n-k)*Binomial[n, k]*k^(k-1), {k, 1, n}], {n, 0, 20}]
-
x='x+O('x^50); concat([0], Vec(serlaplace(-exp(-x)*lambertw(-x)))) \\ G. C. Greubel, Nov 07 2017
A350134
Number of endofunctions on [n] with at least one isolated fixed point.
Original entry on oeis.org
0, 1, 1, 10, 87, 1046, 15395, 269060, 5440463, 124902874, 3208994379, 91208536112, 2841279322871, 96258245162678, 3523457725743059, 138573785311560916, 5827414570508386335, 260928229315498155314, 12393729720071855683739, 622422708333615857463608
Offset: 0
a(3) = 10: 123, 122, 133, 132, 121, 323, 321, 113, 223, 213.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23);
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1, n}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)
Showing 1-10 of 20 results.
Comments