cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A033581 a(n) = 6*n^2.

Original entry on oeis.org

0, 6, 24, 54, 96, 150, 216, 294, 384, 486, 600, 726, 864, 1014, 1176, 1350, 1536, 1734, 1944, 2166, 2400, 2646, 2904, 3174, 3456, 3750, 4056, 4374, 4704, 5046, 5400, 5766, 6144, 6534, 6936, 7350, 7776, 8214, 8664, 9126, 9600, 10086, 10584, 11094, 11616
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 4-partite graph of order 4n, K_n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
Number of edges of the complete bipartite graph of order 7n, K_n, 6n. - Roberto E. Martinez II, Jan 07 2002
Number of edges in the line graph of the product of two cycle graphs, each of order n, L(C_n x C_n). - Roberto E. Martinez II, Jan 07 2002
Total surface area of a cube of edge length n. See A000578 for cube volume. See A070169 and A071399 for surface area and volume of a regular tetrahedron and links for the other Platonic solids. - Rick L. Shepherd, Apr 24 2002
a(n) can represented as n concentric hexagons (see example). - Omar E. Pol, Aug 21 2011
Sequence found by reading the line from 0, in the direction 0, 6, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A003154 in the same spiral. - Omar E. Pol, Sep 08 2011
Together with 1, numbers m such that floor(2*m/3) and floor(3*m/2) are both squares. Example: floor(2*150/3) = 100 and floor(3*150/2) = 225 are both squares, so 150 is in the sequence. - Bruno Berselli, Sep 15 2014
a(n+1) gives the number of vertices in a hexagon-like honeycomb built from A003215(n) congruent regular hexagons (see link). Example: a hexagon-like honeycomb consisting of 7 congruent regular hexagons has 1 core hexagon inside a perimeter of six hexagons. The perimeter has 18 vertices. The core hexagon has 6 vertices. a(2) = 18 + 6 = 24 is the total number of vertices. - Ivan N. Ianakiev, Mar 11 2015
a(n) is the area of the Pythagorean triangle whose sides are (3n, 4n, 5n). - Sergey Pavlov, Mar 31 2017
More generally, if k >= 5 we have that the sequence whose formula is a(n) = (2*k - 4)*n^2 is also the sequence found by reading the line from 0, in the direction 0, (2*k - 4), ..., in the square spiral whose vertices are the generalized k-gonal numbers. In this case k = 5. - Omar E. Pol, May 13 2018
The sequence also gives the number of size=1 triangles within a match-made hexagon of size n. - John King, Mar 31 2019
For hexagons, the number of matches required is A045945; thus number of size=1 triangles is A033581; number of larger triangles is A307253 and total number of triangles is A045949. See A045943 for analogs for Triangles; see A045946 for analogs for Stars. - John King, Apr 04 2019

Examples

			From _Omar E. Pol_, Aug 21 2011: (Start)
Illustration of initial terms as concentric hexagons:
.
.                                 o o o o o o
.                                o           o
.              o o o o          o   o o o o   o
.             o       o        o   o       o   o
.   o o      o   o o   o      o   o   o o   o   o
.  o   o    o   o   o   o    o   o   o   o   o   o
.   o o      o   o o   o      o   o   o o   o   o
.             o       o        o   o       o   o
.              o o o o          o   o o o o   o
.                                o           o
.                                 o o o o o o
.
.    6            24                   54
.
(End)
		

Crossrefs

Bisection of A032528. Central column of triangle A001283.
Cf. A017593 (first differences).

Programs

Formula

a(n) = A000290(n)*6. - Omar E. Pol, Dec 11 2008
a(n) = A001105(n)*3 = A033428(n)*2. - Omar E. Pol, Dec 13 2008
a(n) = 12*n + a(n-1) - 6, with a(0)=0. - Vincenzo Librandi, Aug 05 2010
G.f.: 6*x*(1+x)/(1-x)^3. - Colin Barker, Feb 14 2012
For n > 0: a(n) = A005897(n) - 2. - Reinhard Zumkeller, Apr 27 2014
a(n) = 3*floor(1/(1-cos(1/n))) = floor(1/(1-n*sin(1/n))) for n > 0. - Clark Kimberling, Oct 08 2014
a(n) = t(4*n) - 4*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(4*n) - 4*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/36.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/72 (A086729).
Product_{n>=1} (1 + 1/a(n)) = sqrt(6)*sinh(Pi/sqrt(6))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(6)*sin(Pi/sqrt(6))/Pi. (End)
E.g.f.: 6*exp(x)*x*(1 + x). - Stefano Spezia, Aug 19 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Nov 08 2001

A070169 Rounded total surface area of a regular tetrahedron with edge length n.

Original entry on oeis.org

0, 2, 7, 16, 28, 43, 62, 85, 111, 140, 173, 210, 249, 293, 339, 390, 443, 501, 561, 625, 693, 764, 838, 916, 998, 1083, 1171, 1263, 1358, 1457, 1559, 1665, 1774, 1886, 2002, 2122, 2245, 2371, 2501, 2634, 2771, 2912, 3055, 3203, 3353, 3507, 3665, 3826, 3991
Offset: 0

Views

Author

Rick L. Shepherd, Apr 24 2002

Keywords

Comments

a(n) is the integer k that minimizes |k/n^2 - sqrt(3)|. - Clark Kimberling, Oct 11 2017

Examples

			a(3)=16 because round(3^2*sqrt(3)) = round(9*1.73205...) = round(15.5884...) = 16.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A033581 (cube), A071396 (octahedron), A071397 (dodecahedron), A071398 (icosahedron), A071399 (volume of tetrahedron).

Programs

  • Magma
    [Round(n^2 * Sqrt(3)): n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Mathematica
    Round[Sqrt[3]#]&/@(Range[0,50]^2) (* Harvey P. Dale, Sep 24 2012 *)
  • PARI
    for(n=0,100,print1(round(n^2*sqrt(3)),","))
    
  • Python
    from math import isqrt
    def A070169(n): return (m:=isqrt(k:=3*n**4))+(k-m*(m+1)>=1) # Chai Wah Wu, Jun 19 2024

Formula

a(n) = round(n^2 * sqrt(3)).
a(n) = A000194(3*n^4). - Christian Krause, Aug 04 2021; corrected by Chai Wah Wu, Jun 19 2024

A071402 Rounded volume of a regular icosahedron with edge length n.

Original entry on oeis.org

0, 2, 17, 59, 140, 273, 471, 748, 1117, 1590, 2182, 2904, 3770, 4793, 5987, 7363, 8936, 10719, 12724, 14964, 17454, 20205, 23231, 26545, 30160, 34089, 38345, 42942, 47893, 53209, 58906, 64995, 71490, 78404, 85749, 93540, 101789, 110509
Offset: 0

Views

Author

Rick L. Shepherd, May 29 2002

Keywords

Comments

The printed reference given shows in a table on p. 10 that Volume is "2.18170a^3" (a is edge). Both PARI (see Example here) and a handheld calculator show that 2.18169 is correct for a 5-decimal-place approximation.

Examples

			a(6)=471 because round(6^3*(3 + sqrt(5))*5/12) = round(216*2.181694990...) = round(471.24...) = 471.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A000578 (cube), A071399 (tetrahedron), A071400 (octahedron), A071401 (dodecahedron), A071398 (total surface area of icosahedron).
Cf. A102208 ((3+Sqrt(5)) * 5/12).

Programs

  • Magma
    [Round(n^3 * (3+Sqrt(5)) * 5/12): n in [0..50]]; // Vincenzo Librandi, May 21 2011
  • PARI
    for(n=0,100,print1(round(n^3*(3+sqrt(5))*5/12),","))
    

Formula

a(n) = round(n^3 * (3+sqrt(5)) * 5/12).

A071401 Rounded volume of a regular dodecahedron with edge length n.

Original entry on oeis.org

0, 8, 61, 207, 490, 958, 1655, 2628, 3924, 5586, 7663, 10200, 13242, 16836, 21028, 25863, 31388, 37649, 44691, 52561, 61305, 70968, 81597, 93237, 105935, 119736, 134687, 150833, 168221, 186896, 206904, 228292, 251105, 275390, 301191, 328556
Offset: 0

Views

Author

Rick L. Shepherd, May 29 2002

Keywords

Examples

			a(6)=1665 because round(6^3*(15+7*sqrt(5))/4)=round(216*7.6631...)=round(1655.23...)=1665.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A000578 (cube), A071399 (tetrahedron), A071400 (octahedron), A071402 (icosahedron), A071397 (total surface area of dodecahedron).

Programs

  • Mathematica
    Table[Floor[n^3 (15+7Sqrt[5])/4+1/2],{n,0,50}]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    for(n=0,100,print1(round(n^3*(15+7*sqrt(5))/4),","))

Formula

a(n) = round(n^3 * (15+7*sqrt(5))/4)

A071400 Rounded volume of a regular octahedron with edge length n.

Original entry on oeis.org

0, 0, 4, 13, 30, 59, 102, 162, 241, 344, 471, 627, 815, 1036, 1294, 1591, 1931, 2316, 2749, 3233, 3771, 4366, 5020, 5736, 6517, 7366, 8285, 9279, 10348, 11497, 12728, 14044, 15447, 16941, 18528, 20211, 21994, 23878, 25867, 27963, 30170, 32490
Offset: 0

Views

Author

Rick L. Shepherd, May 29 2002

Keywords

Examples

			a(4)=30 because round(4^3*sqrt(2)/3)=round(64*.47140...)=round(30.169...)=30.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A000578 (cube), A071399 (tetrahedron), A071401 (dodecahedron), A071402 (icosahedron), A071396 (total surface area of octahedron).

Programs

  • Mathematica
    With[{c=Sqrt[2]/3},Table[Round[n^3*c],{n,0,50}]] (* Harvey P. Dale, May 20 2014 *)
  • PARI
    for(n=0,100,print1(round(n^3*sqrt(2)/3),","))

Formula

a(n) = round(n^3 * sqrt(2)/3)

A178988 Decimal expansion of volume of golden tetrahedron.

Original entry on oeis.org

7, 5, 7, 5, 5, 2, 2, 1, 2, 8, 1, 0, 1, 1, 4, 9, 2, 9, 7, 6, 9, 2, 0, 8, 0, 5, 6, 3, 0, 6, 4, 4, 5, 8, 0, 9, 2, 7, 0, 3, 7, 5, 3, 2, 6, 1, 9, 3, 9, 2, 9, 2, 1, 4, 7, 5, 9, 1, 2, 9, 9, 2, 1, 3, 9, 5, 2, 4, 5, 6, 5, 1, 0, 6, 0, 2, 5, 9, 4, 9, 6, 8, 8, 5, 3, 3, 6, 9, 9, 2, 8, 4, 4, 4, 9, 8, 4, 2, 5, 6, 9
Offset: 2

Views

Author

Jonathan Vos Post, Jan 03 2011

Keywords

Comments

Volume of tetrahedron with edges 1, phi, phi^2, phi^3, phi^4, phi^5 where phi is the golden ratio (1+sqrt(5))/2.
A152149 records more recent developments about side-golden and angle-golden triangles, both of which, like the golden rectangle, have generalizations that match continued fractions. There is a unique triangle which is both side-golden and angle-golden. Is there a comparable tetrahedron? - Clark Kimberling, Mar 31 2011

Examples

			75.7552212810...
		

References

  • Clark Kimberling, "A New Kind of Golden Triangle." In Applications of Fibonacci Numbers: Proceedings of the Fourth International Conference on Fibonacci Numbers and Their Applications,' Wake Forest University (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam). Dordrecht, Netherlands: Kluwer, pp. 171-176, 1991.
  • Theoni Pappas, "The Pentagon, the Pentagram & the Golden Triangle." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 188-189, 1989.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[275465/96 + 369575*Sqrt[5]/288], 10, 120][[1]] (* Amiram Eldar, Jun 12 2023 *)
  • PARI
    sqrt(275465/96 + (369575*sqrt(5))/288) \\ Charles R Greathouse IV, May 27 2016

Formula

Equals sqrt(275465/96 + (369575*sqrt(5))/288).
The minimal polynomial is 20736*x^4 - 119000880*x^2 + 73225. - Joerg Arndt, Jul 25 2021

Extensions

a(101) corrected by Georg Fischer, Jul 25 2021
Showing 1-6 of 6 results.