A163422 Primes p such that A071568((p-1)/2) is also prime.
3, 5, 7, 11, 13, 17, 19, 31, 37, 43, 59, 61, 79, 83, 89, 97, 107, 109, 113, 139, 149, 167, 191, 233, 241, 263, 271, 293, 307, 311, 337, 359, 373, 383, 439, 443, 479, 487, 491, 523, 557, 617, 641, 647, 659, 673, 683, 701, 733, 757, 811, 829, 853, 857, 859, 877
Offset: 1
Examples
p=3 is in the sequence because (3-1)^3/8+(3+1)/2=3 is prime. p=5 is in the sequence because (5-1)^3/8+(5+1)/2=11 is prime.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(1000) | IsPrime((p^3-3*p^2+7*p+3) div 8)]; // Vincenzo Librandi, Apr 10 2013
-
Mathematica
f[n_]:=((n-1)/2)^3+((n+1)/2); lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n,6!}]; lst Select[Prime[Range[180]], PrimeQ[(#-1)^3/8+(#+1)/2]&] (* Harvey P. Dale, Jan 05 2011 *)
Extensions
Definition rewritten by R. J. Mathar, Aug 17 2009
Comments