cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A096268 Period-doubling sequence (or period-doubling word): fixed point of the morphism 0 -> 01, 1 -> 00.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 22 2004

Keywords

Comments

Take highest power of 2 dividing n (A007814(n+1)), read modulo 2.
For the scale-invariance properties see Hendriks et al., 2012.
This is the sequence that results from the ternary Thue-Morse sequence (A036577) if all twos in that sequence are replaced by zeros. - Nathan Fox, Mar 12 2013
This sequence can be used to draw the Von Koch snowflake with a suitable walk in the plane. Start from the origin then the n-th step is "turn +Pi/3 if a(n)=0 and turn -2*Pi/3 if a(n)=1" (see link for a plot of the first 200000 steps). - Benoit Cloitre, Nov 10 2013
1 iff the number of trailing zeros in the binary representation of n+1 is odd. - Ralf Stephan, Nov 11 2013
Equivalently, with offset 1, the characteristic function of A036554 and an indicator for the A003159/A036554 classification of positive integers. - Peter Munn, Jun 02 2020

Examples

			Start: 0
Rules:
  0 --> 01
  1 --> 00
-------------
0:   (#=1)
  0
1:   (#=2)
  01
2:   (#=4)
  0100
3:   (#=8)
  01000101
4:   (#=16)
  0100010101000100
5:   (#=32)
  01000101010001000100010101000101
6:   (#=64)
  0100010101000100010001010100010101000101010001000100010101000100
7:   (#=128)
  010001010100010001000101010001010100010101000100010001010100010001000101010...
[_Joerg Arndt_, Jul 06 2011]
		

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Not the same as A073059!
Swapping 0 and 1 gives A035263.
Cf. A056832, A123087 (partial sums).
With offset 1, classification indicator for A003159/A036554.
Also with offset 1: A007814 mod 2 (cf. A096271 for mod 3), A048675 mod 2 (cf. A332813 for mod 3), A059975 mod 2.

Programs

  • Haskell
    a096268 = (subtract 1) . a056832 . (+ 1)
    -- Reinhard Zumkeller, Jul 29 2014
    
  • Magma
    [Valuation(n+1, 2) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 20 2016
    
  • Maple
    nmax:=104: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := p mod 2 od: od: seq(a(n), n=0..nmax); # Johannes W. Meijer, Feb 02 2013
    # second Maple program:
    a:= proc(n) a(n):= `if`(n::even, 0, 1-a((n-1)/2)) end:
    seq(a(n), n=0..125);  # Alois P. Heinz, Mar 20 2019
  • Mathematica
    Nest[ Flatten[ # /. {0 -> {1, 0}, 1 -> {0, 0}}] &, {1}, 7] (* Robert G. Wilson v, Mar 05 2005 *)
    {{0}}~Join~SubstitutionSystem[{0 -> {0, 1}, 1 -> {0, 0}}, {1}, 6] // Flatten (* Michael De Vlieger, Aug 15 2016 *)
  • PARI
    a(n)=valuation(n+1,2)%2 \\ Ralf Stephan, Nov 11 2013
    
  • Python
    def A096268(n): return (~(n+1)&n).bit_length()&1 # Chai Wah Wu, Jan 09 2023

Formula

Recurrence: a(2*n) = 0, a(4*n+1) = 1, a(4*n+3) = a(n). - Ralf Stephan, Dec 11 2004
The recurrence may be extended backwards, with a(-1) = 1. - S. I. Ben-Abraham, Apr 01 2013
a(n) = 1 - A035263(n-1). - Reinhard Zumkeller, Aug 16 2006
Dirichlet g.f.: zeta(s)/(1+2^s). - Ralf Stephan, Jun 17 2007
Let T(x) be the g.f., then T(x) + T(x^2) = x^2/(1-x^2). - Joerg Arndt, May 11 2010
Let 2^k||n+1. Then a(n)=1 if k is odd, a(n)=0 if k is even. - Vladimir Shevelev, Aug 25 2010
a(n) = A007814(n+1) mod 2. - Robert G. Wilson v, Jan 18 2012
a((2*n+1)*2^p-1) = p mod 2, p >= 0 and n >= 0. - Johannes W. Meijer, Feb 02 2013
a(n) = A056832(n+1) - 1. - Reinhard Zumkeller, Jul 29 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/3. = Amiram Eldar, Sep 18 2022

Extensions

Corrected by Jeremy Gardiner, Dec 12 2004
More terms from Robert G. Wilson v, Feb 26 2005

A096271 Ternary sequence that is a fixed point of the morphism 0 -> 01, 1 -> 02, 2 -> 00.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jun 23 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[ Function[ l, {Flatten[(l /. {0 -> {0, 1}, 1 -> {0, 2}, 2 -> {0, 0}})]}], {0}, 7] (* Robert G. Wilson v, Feb 26 2005 *)
  • PARI
    map(d)=if(d==2,[0,0],if(d==1,[0,2],[0,1]))
    {m=53;v=[];w=[0];while(v!=w,v=w;w=[];for(n=1,min(m,length(v)),w=concat(w,map(v[n]))));for(n=1,2*m,print1(v[n],","))} \\ Klaus Brockhaus, Jun 23 2004
    
  • PARI
    A096271(n) = if(!(n%2),0,(1+A096271((n-1)/2))%3); \\ Antti Karttunen, Nov 01 2018
    
  • Python
    def A096271(n): return (~(n+1) & n).bit_length()%3 # Chai Wah Wu, Jan 09 2023

Formula

Recurrence: a(2n) = 0, a(2n+1) = (a(n)+1) mod 3. - Ralf Stephan, Dec 11 2004
a(n) = A007814(n+1) mod 3. - Gabriele Fici, Mar 28 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4/7. - Amiram Eldar, Jan 11 2023

Extensions

More terms from Klaus Brockhaus, Jun 23 2004

A179868 (Number of 1's in the binary expansion of n) mod 4.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 0, 1, 2, 2, 3, 2, 3, 3, 0, 2, 3, 3, 0, 3, 0, 0, 1, 1, 2, 2, 3, 2, 3, 3, 0, 2, 3, 3, 0, 3, 0, 0, 1, 2, 3, 3, 0, 3, 0, 0, 1, 3, 0, 0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 0, 2, 3, 3, 0, 3, 0, 0, 1, 2, 3, 3, 0, 3, 0, 0, 1, 3, 0, 0, 1, 0, 1, 1, 2, 2, 3, 3, 0, 3
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2011

Keywords

Comments

This is the generalized Thue-Morse sequence t_4 (Allouche and Shallit, p. 335).

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

Crossrefs

Cf. A000120, A010873, A010060 (mod 2), A071858 (mod 3).

Programs

  • Mathematica
    Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {1, 2}, 2 -> {2, 3}, 3 -> {3, 0}}] &, {0}, 7] (* Robert G. Wilson v, May 17 2014 *)
    Table[Mod[DigitCount[n,2,1],4],{n,0,110}] (* Harvey P. Dale, Jul 24 2016 *)
  • PARI
    a(n)=hammingweight(n)%4 \\ Charles R Greathouse IV, May 09 2016

Formula

a(n) = A010873(A000120(n)).

A245555 Trajectory of 1 under the morphism 1 -> 12, 2 -> 23, 3 -> 31.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 1, 1, 2, 2, 3, 3, 1, 3, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 1, 3, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 3, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 1, 2, 3, 3, 1, 3, 1, 1, 2, 3, 1, 1, 2, 1, 2, 2, 3, 3, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3
Offset: 1

Views

Author

N. J. A. Sloane, Aug 03 2014

Keywords

Comments

The morphism 1->12, 2->21 gives the {1,2} version of the Thue-Morse sequence A001285, cf. A010060.
The morphism 0->01, 1->12, 2->20 gives the generalized Thue-Morse sequence A071858.

Crossrefs

Essentially the same as A071858.

Programs

  • Mathematica
    Nest[ Function[ l, {Flatten[(l /. {1 -> {1, 2}, 2 -> {2, 3}, 3 -> {3, 1}})] }], {1}, 9]
  • PARI
    {a(n) = my(v = [1]); if( n<1, 0, while( #vMichael Somos, Aug 05 2014 */

Formula

a(n) = A071858(n+1) + 1. - Michel Dekking, Sep 29 2020

A234538 (Number of positive digits of n written in base 3) modulo 3.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 0, 0, 2, 0, 0, 1, 2, 2, 2, 0, 0, 2, 0, 0, 1, 2, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Vladimir Shevelev, Jan 13 2014

Keywords

Comments

Since A000120 is the number of positive digits of n written in binary, this sequence is a formal ternary analog of the Thue-Morse sequence A010060. However, one cannot name it a "ternary version of A010060" like the known versions A053838, A071858, A036577-A036586, since it is not "cubefree"; i.e., it contains the same 3 consecutive terms, and there is not a known morphism for which it is a fixed point.

Crossrefs

Programs

  • Mathematica
    a[n_] := Mod[Plus @@ DigitCount[n, 3, {1, 2}], 3]; Array[a, 100, 0] (* Amiram Eldar, Jul 24 2023 *)
  • PARI
    a(n)=my(d=digits(n, 3)); sum(i=1, #d, !d[i])%3 \\ Charles R Greathouse IV, Jan 13 2014

Formula

A160384(n) == a(n) (mod 3).

A179854 Number of 0's (mod 3) in the binary expansion of n.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 0, 0, 2, 2, 1, 2, 1, 1, 0, 1, 0, 0, 2, 0, 2, 2, 1, 0, 2, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 2, 2, 1, 1, 0, 0, 2, 0, 2, 2, 1, 0, 2, 2, 1, 2, 1, 1, 0, 0, 2, 2, 1, 2, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 2, 2, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 2, 2, 1, 2, 1, 1, 0, 1, 0, 0, 2, 1, 0, 0, 2, 0, 2, 2, 1, 1, 0, 0, 2, 0, 2, 2, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 11 2011

Keywords

Comments

A ternary analog of A059448.
Offset is 1 to avoid the ambiguity at n=0.
Inspired by Chapter 1 of Allouche and Shallit.
From Michel Dekking, Sep 30 2020: (Start)
Let tau be the "twisted" 3-symbol length 2 Thue-Morse morphism given by
tau(0) = 10, tau(1) = 21, tau (2) = 02.
The name of tau is in analogy with the comments from A297531. The "ordinary" 3-symbol length 2 Thue-Morse morphism is the morphism mu given by
mu(0) = 01, mu(1) = 12, mu(2) = 20.
The unique fixed point of mu is the sequence A071858 = 01121220...
We have mu^3 = tau^3.
The sequence a = (a(n)) satisfies
a = 0 tau(a).
This follows directly from the recursion formulas
a(2n) = a(n) + 1 mod 3, a(2n+1) = a(n).
(End)

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.

Crossrefs

Cf. A059448. Related to A071858.

Programs

  • Maple
    s1:=[];
    for n from 0 to 200 do
    t1:=convert(n,base,2); t2:=subs(1=NULL,t1); s1:=[op(s1),nops(t2) mod 3]; od:
    s1;

Formula

a(2n) = a(n) + 1 mod 3, a(2n+1) = a(n). - Michel Dekking, Sep 30 2020
Showing 1-6 of 6 results.