cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131712 Period 4: repeat [1, 3, 7, 9].

Original entry on oeis.org

1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1, 3, 7, 9, 1
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Comments

Decimal expansion of 1379/9999. - Klaus Brockhaus, May 21 2010

Crossrefs

Cf. A178148 (decimal expansion of (243+17*sqrt(285))/402). - Klaus Brockhaus, May 21 2010

Programs

Formula

G.f.: (1+3*x+7*x^2+9*x^3)/((1-x)*(x+1)*(1+x^2)). - R. J. Mathar, Nov 14 2007
From Wesley Ivan Hurt, Jul 09 2016: (Start)
a(n) = a(n-4) for n>3.
a(n) = 5 - 3*cos(n*Pi/2) - cos(n*Pi) - 3*sin(n*Pi/2) - I*sin(n*Pi). (End)

Extensions

More terms from Klaus Brockhaus, May 21 2010

A120718 Expansion of 3*x/(1 - 2*x^2 - 2*x + x^3).

Original entry on oeis.org

0, 3, 6, 18, 45, 120, 312, 819, 2142, 5610, 14685, 38448, 100656, 263523, 689910, 1806210, 4728717, 12379944, 32411112, 84853395, 222149070, 581593818, 1522632381, 3986303328, 10436277600, 27322529475, 71531310822, 187271402994, 490282898157, 1283577291480
Offset: 0

Views

Author

Roger L. Bagula, Aug 13 2006

Keywords

Crossrefs

Programs

  • Magma
    [(3/5)*(Lucas(2*n+1) -(-1)^n): n in [0..40]]; // G. C. Greubel, Jul 21 2023
    
  • Mathematica
    LinearRecurrence[{2,2,-1}, {0,3,6}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
    CoefficientList[Series[3x/(1-2x^2-2x+x^3),{x,0,30}],x] (* Harvey P. Dale, Sep 06 2024 *)
  • PARI
    a(n) = 3*(fibonacci(2*n+2) + fibonacci(2*n) - (-1)^n)/5 \\ Colin Barker, Oct 01 2016
    
  • PARI
    concat(0, Vec(3*x/(1-2*x^2-2*x+x^3) + O(x^40))) \\ Colin Barker, Oct 01 2016
    
  • SageMath
    [(3/5)*(lucas_number2(2*n+1,1,-1) -(-1)^n) for n in range(41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = 3*A001654(n). - Arkadiusz Wesolowski, Sep 15 2012
From Colin Barker, Oct 01 2016: (Start)
a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) for n>2.
a(n) = (3/2^(n+1))*( (1-sqrt(5))*(3-sqrt(5))^n + (1+sqrt(5))*(3+sqrt(5))^n + (-2)^(n+1) )/5. (End)
a(n) = (3/5)*(Lucas(2*n+1) - (-1)^n). - G. C. Greubel, Jul 21 2023

Extensions

Offset corrected by Arkadiusz Wesolowski, Sep 15 2012
Showing 1-2 of 2 results.