A074206 Kalmár's [Kalmar's] problem: number of ordered factorizations of n.
0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0
Examples
G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 3*x^10 + ... Number of ordered factorizations of 8 is 4: 8 = 2*4 = 4*2 = 2*2*2.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
- R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
- Kalmár, Laszlo, A "factorisatio numerorum" problemajarol [Hungarian], Matemat. Fizik. Lapok, 38 (1931), 1-15.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..20000 (first 10000 terms from T. D. Noe)
- David Bevan and Julien Condé, Introducing irrational enumeration: analytic combinatorics for objects of irrational size, arXiv:2412.14682 [math.CO], 2024. See p. 11.
- Peter Brown, Number of Ordered Factorizations.
- Peter Brown, Number of Ordered Factorizations.
- Benny Chor, Paul Lemke, and Ziv Mador, On the number of ordered factorizations of natural numbers, Discrete Math. 214 (2000), no. 1-3, 123-133. MR1743631 (2000m:11093).
- Kristin DeVleming and Nikita Singh, Rational unicuspidal plane curves of low degree, arXiv:2311.15922 [math.AG], 2023. See p. 14.
- T. M. A. Fink, Properties of the recursive divisor function and the number of ordered factorizations, arXiv:2307.09140 [math.NT], 2023.
- E. Hille, A problem in factorisatio numerorum, Acta Arith., 2 (1936), 134-144.
- E. Hille, The inversion problem of Möbius, Duke Math. J., 3 (1937), 549-568.
- Shikao Ikehara, On Kalmar's Problem in "Factorisatio Numerorum", Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 21 (1939) pp. 208-219.
- Shikao Ikehara, On Kalmar's Problem in "Factorisatio Numerorum" II, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 23 (1941) pp. 767-774.
- Laszlo Kalmár, Über die mittlere Anzahl der Produktdarstellungen der Zahlen. (Erste Mitteilung), Acta Litt. ac Scient. Szeged 5 (1931): 95-107.
- M. Klazar and F. Luca, On the maximal order of numbers in the "factorisatio numerorum" problem, arXiv:math/0505352 [math.NT], 2005-2006.
- Arnold Knopfmacher and Michael Mays, Ordered and Unordered Factorization of Integers, The Mathematica Journal, Volume 10, Issue 1 p. 72.
- Arnau Mir, Francesc Rossello, and Lucia Rotger, Sound Colless-like balance indices for multifurcating trees, arXiv:1805.01329 [q-bio.PE], 2018.
- Augustine O. Munagi, Labeled factorization of integers, INTEGERS: The Electronic Journal of Combinatorics 16:1 (2009), #R50.
- L. A. Newberg and D. Naor, A lower bound on the number of solutions to the probed partial digest problem, Advances in Applied Mathematics, 14(2), 1993, 172-183. doi: 10.1006/aama.1993.1009.
- Ray Tomes, The Maths and Physics of the Harmonics Theory.
- Eric Weisstein's World of Mathematics, Perfect Partition.
- Eric Weisstein's World of Mathematics, Ordered Factorization.
- David W. Wilson, Comments on A074206 and related sequences.
- David W. Wilson, Perl program for A074206.
- Index entries for "core" sequences
Crossrefs
Apart from initial term, same as A002033.
A124433 has these as unsigned row sums.
A334996 has these as row sums.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A008480 counts ordered prime factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A253249 counts strict chains of divisors.
Programs
-
Haskell
a074206 n | n <= 1 = n | otherwise = 1 + (sum $ map (a074206 . (div n)) $ tail $ a027751_row n) -- Reinhard Zumkeller, Oct 01 2012
-
Maple
a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000 A074206:= proc(n) option remember; if n > 1 then `+`(op(apply(A074206, numtheory[divisors](n)[1..-2]))) else n fi end: # M. F. Hasler, Oct 12 2018
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[20000] (* N. J. A. Sloane, May 04 2016, based on program in A002033 *) ccc[n_]:=Switch[n,0,{},1,{{1}},,Join@@Table[Prepend[#,n]&/@ccc[d],{d,Most[Divisors[n]]}]]; Table[Length[ccc[n]],{n,0,100}] (* _Gus Wiseman, Aug 25 2020 *)
-
PARI
A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A/=2; A[1]=1; concat(0,A) \\ Charles R Greathouse IV, Nov 20 2012
-
PARI
{a(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, a(A[k])))}; /* Michael Somos, Dec 26 2016 */
-
PARI
A074206(n)=if(n>1, sumdiv(n, i, if(i
A074206(i))),n) \\ M. F. Hasler, Oct 12 2018 -
PARI
A74206=[1]; A074206(n)={if(#A74206
A074206(i)))} \\ Use memoization for computing many values. - M. F. Hasler, Oct 12 2018 -
PARI
first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, for(j = 2, n \ i, res[i*j] += res[i])); concat(0, res)} \\ David A. Corneth, Oct 13 2018
-
PARI
first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, d = divisors(i); res[i] += sum(j = 1, #d-1, res[d[j]])); concat(0, res)} \\ somewhat faster than progs above for finding first terms of n. \\ David A. Corneth, Oct 12 2018
-
PARI
a(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Aug 30 2020
-
Python
from math import prod from functools import lru_cache from sympy import divisors, factorint, prime @lru_cache(maxsize=None) def A074206(n): return sum(A074206(d) for d in divisors(prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n).values(),reverse=True))),generator=True,proper=True)) if n > 1 else n # Chai Wah Wu, Sep 16 2022
-
SageMath
@cached_function def minus_mu(n): if n < 2: return n return sum(minus_mu(d) for d in divisors(n)[:-1]) # Note that changing the sign of the sum gives the Möbius function A008683. print([minus_mu(n) for n in (0..96)]) # Peter Luschny, Dec 26 2016
Formula
With different offset: a(n) = sum of all a(i) such that i divides n and i < n. - Clark Kimberling
a(p^k) = 2^(k-1) if k>0 and p is a prime.
Dirichlet g.f.: 1/(2-zeta(s)). - Herbert S. Wilf, Apr 29 2003
If p,q,r,... are distinct primes, then a(p*q)=3, a(p^2*q)=8, a(p*q*r)=13, a(p^3*q)=20, etc. - Vladimir Shevelev, Aug 03 2011 [corrected by Charles R Greathouse IV, Jun 02 2012]
a(0) = 0, a(1) = 1; a(n) = [x^n] Sum_{k=1..n-1} a(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 11 2017
a(n) = a(A046523(n)); a(A025487(n)) = A050324(n): a(n) depends only on the nonzero exponents in the prime factorization of n, more precisely prime signature of n, cf. A124010 and A320390. - M. F. Hasler, Oct 12 2018
a(n) = A000670(A001221(n)) for squarefree n. In particular a(A002110(n)) = A000670(n). - Amiram Eldar, May 13 2019
a(n) = A050369(n)/n, for n>=1. - Ridouane Oudra, Aug 31 2019
From Ridouane Oudra, Nov 02 2023: (Start)
If p,q are distinct primes, and n,m>0 then we have:
a(p^n*q^m) = Sum_{k=0..min(n,m)} 2^(n+m-k-1)*binomial(n,k)*binomial(m,k);
More generally: let tau[k](n) denote the number of ordered factorizations of n as a product of k terms, also named the k-th Piltz function (see A007425), then we have for n>1:
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=1..j} (-1)^(j-k)*binomial(j,k)*tau[k](n), or
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=0..j-1} (-1)^k*binomial(j,k)*tau[j-k](n). (End)
Extensions
Originally this sequence was merged with A002033, the number of perfect partitions. Herbert S. Wilf suggested that it warrants an entry of its own.
Comments