cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A034891 Number of different products of partitions of n; number of partitions of n into prime parts (1 included); number of distinct orders of Abelian subgroups of symmetric group S_n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 11, 14, 18, 23, 29, 36, 45, 55, 67, 81, 98, 117, 140, 166, 196, 231, 271, 317, 369, 429, 496, 573, 660, 758, 869, 993, 1133, 1290, 1465, 1662, 1881, 2125, 2397, 2699, 3035, 3407, 3820, 4276, 4780, 5337, 5951, 6628, 7372, 8191, 9090
Offset: 0

Views

Author

Keywords

Comments

a(n) = length of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
Number of partitions of n into noncomposite parts. - Omar E. Pol, Jun 23 2022

Crossrefs

Programs

  • Haskell
    a034891 = length . a212721_row  -- Reinhard Zumkeller, Jun 14 2012
    
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, (p->
          `if`(i<0, 0, b(n, i-1)+ `if`(p>n, 0,
             b(n-p, i))))(`if`(i<1, 1, ithprime(i))))
        end:
    a:= n-> b(n, numtheory[pi](n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 15 2013
  • Mathematica
    Table[ Length[ Union[ Apply[ Times, Partitions[ n], 1]]], {n, 30}]
    CoefficientList[ Series[ (1/(1 - x)) Product[1/(1 - x^Prime[i]), {i, 100}], {x, 0, 50}], x] (* Robert G. Wilson v, Aug 17 2013 *)
    b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<0, 0, b[n, i-1] + If[p>n, 0, b[n-p, i]]]]]; a[n_] := b[n, PrimePi[n] ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • Sage
    [Partitions(n, parts_in=(prime_range(n+1)+[1])).cardinality() for n in xsrange(1000)] # Giuseppe Coppoletta, Jul 11 2016

Formula

G.f.: (1/(1-x))*(1/Product_{k>0} (1-x^prime(k))). a(n) = (1/n)*Sum_{k=1..n} A074372(k)*a(n-k). Partial sums of A000607. - Vladeta Jovovic, Sep 19 2002
a(n) = A000041(n) - A353188(n). - Omar E. Pol, Jun 23 2022

Extensions

More terms from Vladeta Jovovic
a(0)=1 from Michael Somos, Feb 05 2011

A074374 a(n) = sopfr(n)*(sopfr(n)+1)/2 where sopfr is the sum of the prime factors of n with repetition (A001414).

Original entry on oeis.org

0, 0, 3, 6, 10, 15, 15, 28, 21, 21, 28, 66, 28, 91, 45, 36, 36, 153, 36, 190, 45, 55, 91, 276, 45, 55, 120, 45, 66, 435, 55, 496, 55, 105, 190, 78, 55, 703, 231, 136, 66, 861, 78, 946, 120, 66, 325, 1128, 66, 105, 78, 210, 153, 1431, 66, 136, 91, 253, 496, 1770, 78
Offset: 0

Views

Author

W. Neville Holmes, Aug 29 2002

Keywords

Examples

			a(10) = 7(7+1)/2 = 28 because 7 is the sum of the prime factors of 10.
		

Crossrefs

Cf. A000217, A001414 (sopfr), A074372.

Programs

  • Mathematica
    f[n_]:=Module[{c=Total[Times@@@FactorInteger[n]]},(c(c+1))/2]; Join[{0,0}, Array[f,60,2]] (* Harvey P. Dale, Aug 21 2011 *)
  • PARI
    s(n)=sum(i=1,omega(n), component(component(factor(n),1),i)*component(component(factor(n),2),i))
    a(n)=s(n)*(s(n)+1)/2

Formula

a(n) = A000217(A001414(n)).

Extensions

More terms from Benoit Cloitre, Sep 02 2002

A254340 Sum of the distinct prime factors of n plus n+1: a(n) = A008472(n) + n + 1.

Original entry on oeis.org

2, 5, 7, 7, 11, 12, 15, 11, 13, 18, 23, 18, 27, 24, 24, 19, 35, 24, 39, 28, 32, 36, 47, 30, 31, 42, 31, 38, 59, 41, 63, 35, 48, 54, 48, 42, 75, 60, 56, 48, 83, 55, 87, 58, 54, 72, 95, 54, 57, 58, 72, 68, 107, 60, 72, 66, 80, 90, 119, 71, 123, 96, 74, 67, 84
Offset: 1

Views

Author

Wesley Ivan Hurt, May 03 2015

Keywords

Comments

If n is prime, then a(n) = 2n+1; thus if n is a Sophie Germain prime p, then a(p) gives the safe prime q=2p+1.
If n is semiprime, then a(n) = sigma(n).
If m and n are coprime, then a(m*n) = a(m) + a(n) + (m-1)*(n-1) - 2. - Robert Israel, May 04 2015

Crossrefs

Cf. A000203 (sigma), A008472 (sopf), A074372, A075653.
Cf. A005384 (Sophie Germain primes), A005385 (safe primes).

Programs

  • Magma
    [&+PrimeDivisors(n)+n+1: n in [1..70]]; // Bruno Berselli, May 27 2015
  • Maple
    map(t -> t+1+convert(numtheory:-factorset(t),`+`),[$1..100]); # Robert Israel, May 04 2015
  • Mathematica
    Table[n + 1 + DivisorSum[n, # &, PrimeQ[#] &], {n, 100}]
  • PARI
    vector(100,n,vecsum(factor(n)[,1]~)+n+1) \\ Derek Orr, May 13 2015
    

Formula

a(n) = A075653(n) + 1 = A074372(n) + n. [Bruno Berselli, May 27 2015]
Showing 1-3 of 3 results.