cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A094727 Triangle read by rows: T(n,k) = n + k, 0 <= k < n, n >= 1.

Original entry on oeis.org

1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11, 7, 8, 9, 10, 11, 12, 13, 8, 9, 10, 11, 12, 13, 14, 15, 9, 10, 11, 12, 13, 14, 15, 16, 17, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2004

Keywords

Comments

All numbers m occur ceiling(m/2) times, see A004526.
The LCM of the n-th row is A076100. - Michel Marcus, Mar 18 2018

Examples

			Triangle begins:
  1;
  2,  3;
  3,  4,  5;
  4,  5,  6,  7;
  5,  6,  7,  8,  9;
  6,  7,  8,  9, 10, 11;
  7,  8,  9, 10, 11, 12, 13;
  8,  9, 10, 11, 12, 13, 14, 15;
  9, 10, 11, 12, 13, 14, 15, 16, 17;
  ... - _Philippe Deléham_, Mar 30 2013
		

Crossrefs

Programs

  • Haskell
    a094727 n k = n + k
    a094727_row n = a094727_tabl !! (n-1)
    a094727_tabl = iterate (\row@(h:_) -> (h + 1) : map (+ 2) row) [1]
    -- Reinhard Zumkeller, Jul 22 2012
    
  • Magma
    z:=12; &cat[ [m+n-1: m in [1..n] ]: n in [1..z] ];
    
  • Mathematica
    Table[n + Range[0, n-1], {n, 12}]//Flatten (* Michael De Vlieger, Dec 16 2016 *)
  • Python
    from math import isqrt
    def A094727(n): return ((a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(3-a)>>1)+n-1 # Chai Wah Wu, Jun 19 2025
  • SageMath
    flatten([[n+k for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Mar 10 2024
    

Formula

T(n+1, k) = T(n, k) + 1 = T(n, k+1); T(n+1, k+1) = T(n, k) + 2.
T(n, n - A005843(k)) = A005843(n-k) for 0 <= k <= n/2.
T(n, n - A005408(k)) = A005408(n-k) for 0 <= k < n/2.
T(A005408(n), n) = A016777(n), n >= 0.
Sum_{k=1..n} T(n, k) = A000326(n) (row sums).
T(n, k) = A002024(n,k) + A002260(n,k) - 1. - Reinhard Zumkeller, Apr 27 2006
As a sequence rather than as a table: If m = floor((sqrt(8n-7)+1)/2), a(n) = n - m*(m-3)/2 - 1. - Carl R. White, Jul 30 2009
T(n, k) = n+k-1, n >= k >= 1. - Vincenzo Librandi, Nov 23 2009 [corrected by Klaus Brockhaus, Nov 23 2009]
T(n,k) = A037213((A214604(n,k) + A214661(n,k)) / 2). - Reinhard Zumkeller, Jul 25 2012
From Boris Putievskiy, Jan 16 2013: (Start)
a(n) = A002260(n) + A003056(n).
a(n) = i+t, where i=n-t*(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). (End)
From G. C. Greubel, Mar 10 2024: (Start)
T(3*n-3, n) = A016813(n-1).
T(4*n-4, n) = A016861(n-1).
Sum_{k=0..n-1} (-1)^k*T(n, k) = A319556(n).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A093005(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = A078112(n-1).
Sum_{j=1..n} (Sum_{k=0..n-1} T(j, k)) = A002411(n) (sum of n rows). (End)

A099996 a(n) = lcm{1, 2, ..., 2*n}.

Original entry on oeis.org

1, 2, 12, 60, 840, 2520, 27720, 360360, 720720, 12252240, 232792560, 232792560, 5354228880, 26771144400, 80313433200, 2329089562800, 144403552893600, 144403552893600, 144403552893600, 5342931457063200, 5342931457063200
Offset: 0

Views

Author

N. J. A. Sloane, Nov 20 2004

Keywords

Comments

The prime number theorem implies that a(n) = e^(2n(1+o(1))) as n -> infinity. In other words, log(a(n))/n -> 2 as n -> infinity. (Sondow)

Examples

			The LCM of {1,2,3,4,5,6} is 60 and 6 = 2*3, so a(3) = 60.
		

Crossrefs

Bisection of A003418.
Cf. A051173.

Programs

Extensions

More terms from Jonathan Sondow, Jan 17 2005

A069685 Denominators of coefficients in -log(1+x)log(1-x) power series.

Original entry on oeis.org

1, 12, 180, 1680, 12600, 166320, 2522520, 576576, 22054032, 465585120, 2560718160, 64250746560, 348024877200, 1124388064800, 4990906206000, 165032631878400, 350694342741600, 2599263952084800, 101515697684200800
Offset: 1

Views

Author

Benoit Cloitre, May 03 2002

Keywords

Crossrefs

Programs

  • PARI
    my(x='x+O('x^50), v=Vec(-log(1+x)*log(1-x))); apply(denominator, vector(#v\2, k, v[2*k-1])) \\ Michel Marcus, Feb 16 2021

Formula

a(n) = n*A076100(n) (conjectured). - F. Chapoton, Nov 09 2009

A211168 Exponent of alternating group An.

Original entry on oeis.org

1, 1, 3, 6, 30, 60, 420, 420, 1260, 2520, 27720, 27720, 360360, 360360, 360360, 360360, 6126120, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 1

Views

Author

Alexander Gruber, Jan 31 2013

Keywords

Comments

a(n) is the smallest natural number m such that g^m = 1 for any g in An.
If m <= n, a m-cycle occurs in some permutation in An if and only if m is odd or m <= n - 2. The exponent is the LCM of the m's satisfying these conditions, leading to the formula below.

Examples

			For n = 7, lcm{1,...,5,7} = 420.
		

Crossrefs

Even entries given by the sequence A076100, or the odd entries in the sequence A003418.
The records of this sequence are a subsequence of A002809 and A126098.

Programs

  • Magma
    for n in [1..40] do
    Exponent(AlternatingGroup(n));
    end for;
    
  • Magma
    for n in [1..40] do
    if n mod 2 eq 0 then
    L := [1..n-1];
    else
    L := Append([1..n-2],n);
    end if;
    LCM(L);
    end for;
    
  • Mathematica
    Table[If[Mod[n, 2] == 0, LCM @@ Range[n - 1],
      LCM @@ Join[Range[n - 2], {n}]], {n, 1, 100}] (* or *)
    a[1] = 1; a[2] = 1; a[3] = 3; a[n_] := a[n] =
      If[Mod[n, 2] == 0, LCM[a[n - 1], n - 2], LCM[a[n - 2], n - 3, n]]; Table[a[n], {n, 1, 40}]
  • PARI
    a(n)=lcm(if(n%2,concat([2..n-2],n),[2..n-1])) \\ Charles R Greathouse IV, Mar 02 2014

Formula

Explicit:
a(n) = lcm{1, ..., n-1} if n is even.
= lcm{1, ..., n-2, n} if n is odd.
Recursive:
Let a(1) = a(2) = 1 and a(3) = 3. Then
a(n) = lcm{a(n-1), n-2} if n is even.
= lcm{a(n-2), n-3, n} if n is odd.
a(n) = A003418(n)/(1 + [n in A228693]) for n > 1. - Charlie Neder, Apr 25 2019

A334224 Consider a graph as defined in A306302 formed from a row of n adjacent congruent squares with the diagonals of all possible rectangles; a(n) is the minimum edge length of the squares such that the vertices formed by all intersections have integer x and y coordinates.

Original entry on oeis.org

2, 6, 60, 420, 2520, 27720, 360360, 360360, 12252240, 232792560, 232792560, 5354228880, 26771144400, 80313433200, 2329089562800, 72201776446800, 144403552893600, 144403552893600, 5342931457063200
Offset: 1

Views

Author

Keywords

Examples

			a(1) = 2 as for a single square, with its bottom left corner at the origin, with both diagonals drawn the intersection point of those lines is at (L/2,L/2) where L is the edge length. Thus L=2 for this to have integer coordinates.
a(2) = 6 as for two vertically adjacent squares the seven intersection points of the diagonals and shared internal edge have coordinates (L/3,4L/3),(L/2,3L/2),(2L/3,4L/3),(L/2,L),(L/3,2L/3),(L/2,L/2),(2L/3,2L/3). Thus L=6, the lowest common multiple of the denominators, for all these points to have integer coordinates.
		

Crossrefs

Formula

a(n) = A003418(2n-1) = A076100(n) for n>1.
Showing 1-5 of 5 results.