cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A003418 Least common multiple (or LCM) of {1, 2, ..., n} for n >= 1, a(0) = 1.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 12252240, 232792560, 232792560, 232792560, 232792560, 5354228880, 5354228880, 26771144400, 26771144400, 80313433200, 80313433200, 2329089562800, 2329089562800
Offset: 0

Views

Author

Roland Anderson (roland.anderson(AT)swipnet.se)

Keywords

Comments

The minimal exponent of the symmetric group S_n, i.e., the least positive integer for which x^a(n)=1 for all x in S_n. - Franz Vrabec, Dec 28 2008
Product over all primes of highest power of prime less than or equal to n. a(0) = 1 by convention.
Also smallest number whose set of divisors contains an n-term arithmetic progression. - Reinhard Zumkeller, Dec 09 2002
An assertion equivalent to the Riemann hypothesis is: | log(a(n)) - n | < sqrt(n) * log(n)^2. - Lekraj Beedassy, Aug 27 2006. (This is wrong for n = 1 and n = 2. Should "for n large enough" be added? - Georgi Guninski, Oct 22 2011)
Corollary 3 of Farhi gives a proof that a(n) >= 2^(n-1). - Jonathan Vos Post, Jun 15 2009
Appears to be row products of the triangle T(n,k) = b(A010766) where b = A130087/A130086. - Mats Granvik, Jul 08 2009
Greg Martin (see link) proved that "the product of the Gamma function sampled over the set of all rational numbers in the open interval (0,1) whose denominator in lowest terms is at most n" equals (2*Pi)^(1/2)*a(n)^(-1/2). - Jonathan Vos Post, Jul 28 2009
a(n) = lcm(A188666(n), A188666(n)+1, ..., n). - Reinhard Zumkeller, Apr 25 2011
a(n+1) is the smallest integer such that all polynomials a(n+1)*(1^i + 2^i + ... + m^i) in m, for i=0,1,...,n, are polynomials with integer coefficients. - Vladimir Shevelev, Dec 23 2011
It appears that A020500(n) = a(n)/a(n-1). - Asher Auel, corrected by Bill McEachen, Apr 05 2024
n-th distinct value = A051451(n). - Matthew Vandermast, Nov 27 2009
a(n+1) = least common multiple of n-th row in A213999. - Reinhard Zumkeller, Jul 03 2012
For n > 2, (n-1) = Sum_{k=2..n} exp(a(n)*2*i*Pi/k). - Eric Desbiaux, Sep 13 2012
First column minus second column of A027446. - Eric Desbiaux, Mar 29 2013
For n > 0, a(n) is the smallest number k such that n is the n-th divisor of k. - Michel Lagneau, Apr 24 2014
Slowest growing integer > 0 in Z converging to 0 in Z^ when considered as profinite integer. - Herbert Eberle, May 01 2016
What is the largest number of consecutive terms that are all equal? I found 112 equal terms from a(370261) to a(370372). - Dmitry Kamenetsky, May 05 2019
Answer: there exist arbitrarily long sequences of consecutive terms with the same value; also, the maximal run of consecutive terms with different values is 5 from a(1) to a(5) (see link Roger B. Eggleton). - Bernard Schott, Aug 07 2019
Related to the inequality (54) in Ramanujan's paper about highly composite numbers A002182, also used in A199337: a(A329570(m))^2 is a (not minimal) bound above which all highly composite numbers are divisible by m, according to the right part of that inequality. - M. F. Hasler, Jan 04 2020
For n > 2, a(n) is of the form 2^e_1 * p_2^e_2 * ... * p_m^e_m, where e_m = 1 and e = floor(log_2(p_m)) <= e_1. Therefore, 2^e * p_m^e_m is a primitive Zumkeler number (A180332). Therefore, 2^e_1 * p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 2, a(n) = 2^e_1 * p_m^e_m * r, where r is relatively prime to 2*p_m, is a Zumkeller number (see my proof at A002182 for details). - Ivan N. Ianakiev, May 10 2020
For n > 1, 2|(a(n)+2) ... n|(a(n)+n), so a(n)+2 .. a(n)+n are all composite and (part of) a prime gap of at least n. (Compare n!+2 .. n!+n). - Stephen E. Witham, Oct 09 2021

Examples

			LCM of {1,2,3,4,5,6} = 60. The primes up to 6 are 2, 3 and 5. floor(log(6)/log(2)) = 2 so the exponent of 2 is 2.
floor(log(6)/log(3)) = 1 so the exponent of 3 is 1.
floor(log(6)/log(5)) = 1 so the exponent of 5 is 1. Therefore, a(6) = 2^2 * 3^1 * 5^1 = 60. - _David A. Corneth_, Jun 02 2017
		

References

  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 365.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row products of A133233.
Cf. A025528 (number of prime factors of a(n) with multiplicity).
Cf. A275120 (lengths of runs of consecutive equal terms), A276781 (ordinal transform from term a(1)=1 onward).

Programs

  • Haskell
    a003418 = foldl lcm 1 . enumFromTo 2
    -- Reinhard Zumkeller, Apr 04 2012, Apr 25 2011
    
  • Magma
    [1] cat [Exponent(SymmetricGroup(n)) : n in [1..28]]; // Arkadiusz Wesolowski, Sep 10 2013
    
  • Magma
    [Lcm([1..n]): n in [0..30]]; // Bruno Berselli, Feb 06 2015
    
  • Maple
    A003418 := n-> lcm(seq(i,i=1..n));
    HalfFarey := proc(n) local a,b,c,d,k,s; a := 0; b := 1; c := 1; d := n; s := NULL; do k := iquo(n + b, d); a, b, c, d := c, d, k*c - a, k*d - b; if 2*a > b then break fi; s := s,(a/b); od: [s] end: LCM := proc(n) local i; (1/2)*mul(2*sin(Pi*i),i=HalfFarey(n))^2 end: # Peter Luschny
    # next Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, ilcm(n, a(n-1))) end:
    seq(a(n), n=0..33);  # Alois P. Heinz, Jun 10 2021
  • Mathematica
    Table[LCM @@ Range[n], {n, 1, 40}] (* Stefan Steinerberger, Apr 01 2006 *)
    FoldList[ LCM, 1, Range@ 28]
    A003418[0] := 1; A003418[1] := 1; A003418[n_] := A003418[n] = LCM[n,A003418[n-1]]; (* Enrique Pérez Herrero, Jan 08 2011 *)
    Table[Product[Prime[i]^Floor[Log[Prime[i], n]], {i, PrimePi[n]}], {n, 0, 28}] (* Wei Zhou, Jun 25 2011 *)
    Table[Product[Cyclotomic[n, 1], {n, 2, m}], {m, 0, 28}] (* Fred Daniel Kline, May 22 2014 *)
    a1[n_] := 1/12 (Pi^2+3(-1)^n (PolyGamma[1,1+n/2] - PolyGamma[1,(1+n)/2])) // Simplify
    a[n_] := Denominator[Sqrt[a1[n]]];
    Table[If[IntegerQ[a[n]], a[n], a[n]*(a[n])[[2]]], {n, 0, 28}] (* Gerry Martens, Apr 07 2018 [Corrected by Vaclav Kotesovec, Jul 16 2021] *)
  • PARI
    a(n)=local(t); t=n>=0; forprime(p=2,n,t*=p^(log(n)\log(p))); t
    
  • PARI
    a(n)=if(n<1,n==0,1/content(vector(n,k,1/k)))
    
  • PARI
    a(n)=my(v=primes(primepi(n)),k=sqrtint(n),L=log(n+.5));prod(i=1,#v,if(v[i]>k,v[i],v[i]^(L\log(v[i])))) \\ Charles R Greathouse IV, Dec 21 2011
    
  • PARI
    a(n)=lcm(vector(n,i,i)) \\ Bill Allombert, Apr 18 2012 [via Charles R Greathouse IV]
    
  • PARI
    n=1; lim=100; i=1; j=1; until(n==lim, a=lcm(j,i+1); i++; j=a; n++; print(n" "a);); \\ Mike Winkler, Sep 07 2013
    
  • Python
    from functools import reduce
    from operator import mul
    from sympy import sieve
    def integerlog(n,b): # find largest integer k>=0 such that b^k <= n
        kmin, kmax = 0,1
        while b**kmax <= n:
            kmax *= 2
        while True:
            kmid = (kmax+kmin)//2
            if b**kmid > n:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmin
    def A003418(n):
        return reduce(mul,(p**integerlog(n,p) for p in sieve.primerange(1,n+1)),1) # Chai Wah Wu, Mar 13 2021
    
  • Python
    # generates initial segment of sequence
    from math import gcd
    from itertools import accumulate
    def lcm(a, b): return a * b // gcd(a, b)
    def aupton(nn): return [1] + list(accumulate(range(1, nn+1), lcm))
    print(aupton(30)) # Michael S. Branicky, Jun 10 2021
  • Sage
    [lcm(range(1,n)) for n in range(1, 30)] # Zerinvary Lajos, Jun 06 2009
    
  • Scheme
    (define (A003418 n) (let loop ((n n) (m 1)) (if (zero? n) m (loop (- n 1) (lcm m n))))) ;; Antti Karttunen, Jan 03 2018
    

Formula

The prime number theorem implies that lcm(1,2,...,n) = exp(n(1+o(1))) as n -> infinity. In other words, log(lcm(1,2,...,n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = Product (p^(floor(log n/log p))), where p runs through primes not exceeding n (i.e., primes 2 through A007917(n)). - Lekraj Beedassy, Jul 27 2004
Greg Martin showed that a(n) = lcm(1,2,3,...,n) = Product_{i = Farey(n), 0 < i < 1} 2*Pi/Gamma(i)^2. This can be rewritten (for n > 1) as a(n) = (1/2)*(Product_{i = Farey(n), 0 < i <= 1/2} 2*sin(i*Pi))^2. - Peter Luschny, Aug 08 2009
Recursive formula useful for computations: a(0)=1; a(1)=1; a(n)=lcm(n,a(n-1)). - Enrique Pérez Herrero, Jan 08 2011
From Enrique Pérez Herrero, Jun 01 2011: (Start)
a(n)/a(n-1) = A014963(n).
if n is a prime power p^k then a(n)=a(p^k)=p*a(n-1), otherwise a(n)=a(n-1).
a(n) = Product_{k=2..n} (1 + (A007947(k)-1)*floor(1/A001221(k))), for n > 1. (End)
a(n) = A079542(n+1, 2) for n > 1.
a(n) = exp(Sum_{k=1..n} Sum_{d|k} moebius(d)*log(k/d)). - Peter Luschny, Sep 01 2012
a(n) = A025529(n) - A027457(n). - Eric Desbiaux, Mar 14 2013
a(n) = exp(Psi(n)) = 2 * Product_{k=2..A002088(n)} (1 - exp(2*Pi*i * A038566(k+1) / A038567(k))), where i is the imaginary unit, and Psi the second Chebyshev's function. - Eric Desbiaux, Aug 13 2014
a(n) = A064446(n)*A038610(n). - Anthony Browne, Jun 16 2016
a(n) = A000142(n) / A025527(n) = A000793(n) * A225558(n). - Antti Karttunen, Jun 02 2017
log(a(n)) = Sum_{k>=1} (A309229(n, k)/k - 1/k). - Mats Granvik, Aug 10 2019
From Petros Hadjicostas, Jul 24 2020: (Start)
Nair (1982) proved that 2^n <= a(n) <= 4^n for n >= 9. See also Farhi (2009). Nair also proved that
a(n) = lcm(m*binomial(n,m): 1 <= m <= n) and
a(n) = gcd(a(m)*binomial(n,m): n/2 <= m <= n). (End)
Sum_{n>=1} 1/a(n) = A064859. - Bernard Schott, Aug 24 2020

A188666 Largest m <= n such that lcm(m, m+1, ..., n) = lcm(1, 2, ..., n).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 7, 7, 8, 8, 9, 9, 11, 11, 11, 11, 13, 13, 13, 13, 16, 16, 16, 16, 16, 16, 17, 17, 19, 19, 19, 19, 23, 23, 23, 23, 23, 23, 23, 23, 25, 25, 25, 25, 27, 27, 27, 27, 29, 29, 29, 29, 31, 31, 31, 31, 32, 32, 37, 37, 37, 37, 37, 37
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 25 2011

Keywords

Comments

By definition: A003418(n) = lcm(a(n), a(n)+1, ... n)
and lcm(m, m+1, ... n) < A003418(n) for m > a(n);
all terms are prime powers, cf. A000961: A010055(a(n)) = 1;
a(A110654(n)) = A000015(n);
floor(n/2)+1 <= a(n) < a(2*(a(n));
A000961(n+1) = a(2*A000961(n)) = a(A138929(n)), cf. formula.
A237709 gives number of occurrences of n-th prime power. - Reinhard Zumkeller, Feb 12 2014
Conjecture: a(n) = A000015(floor(n/2)+1). - Georg Fischer, Nov 29 2022

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a188666 n = a188666_list !! (n-1)
    a188666_list = g 1 a000961_list where
       g n pps'@(pp:pp':pps) | n < 2*pp  = pp  : g (n+1) pps'
                             | otherwise = pp' : g (n+1) (pp':pps)
    -- Alternative, rewriting the definition, but less efficient:
    a188666' n = last $ elemIndices (f 1) $ map f [0..n] where
       f from = foldl lcm 1 [from..n]
    
  • Mathematica
    Table[Block[{k = n, m = LCM @@ Range[n]},  While[LCM @@ Range[k, n] != m, k--]; k], {n, 69}] (* Michael De Vlieger, Nov 29 2022 *)
  • PARI
    A188666(n)=L=lcm(n=vector(n-1,k,k+1));!for(m=1,#n,lcm(n[-m..-1])==L&&return(#n+2-m))\\ Rather illustrative than efficient. - M. F. Hasler, Jul 25 2015
    
  • Python
    from itertools import count
    from sympy import factorint
    def A188666(n): return next(filter(lambda m:len(factorint(m))<=1, count((n>>1)+1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = A000961(k+1) for n: 2*A000961(k) <= n < 2*A000961(k+1), k > 0.

A268512 Triangle of coefficients c(n,i), 1<=i<=n, such that for each n>=2, c(n,i) are setwise coprime; and for all primes p>2n-1, the sum of (-1)^i*c(n,i)*binomial(i*p,p) is divisible by p^(2n-1).

Original entry on oeis.org

1, 2, 1, 12, 9, 2, 60, 54, 20, 3, 840, 840, 400, 105, 12, 2520, 2700, 1500, 525, 108, 10, 27720, 31185, 19250, 8085, 2268, 385, 30, 360360, 420420, 280280, 133770, 45864, 10780, 1560, 105, 720720, 864864, 611520, 321048, 127008, 36960, 7488, 945, 56, 12252240, 15036840, 11138400, 6297480, 2776032, 942480
Offset: 1

Views

Author

Max Alekseyev, Feb 06 2016

Keywords

Examples

			n=1: 1
n=2: 2, 1
n=3: 12, 9, 2
n=4: 60, 54, 20, 3
n=5: 840, 840, 400, 105, 12
...
For all primes p>3, p^3 divides 2 - binomial(2*p,p) (cf. A087754).
For all primes p>5, p^5 divides 12 - 9*binomial(2*p,p) + 2*binomial(3*p,p) (cf. A268589).
For all primes p>7, p^7 divides 60 - 54*binomial(2*p,p) + 20*binomial(3*p,p) - 3*binomial(4*p,p) (cf. A268590).
		

Crossrefs

Cf. A099996 (first column), A068550 (diagonal), A087754, A268589, A268590, A254593.

Programs

  • Mathematica
    a3418[n_] := LCM @@ Range[n];
    c[1, 1] = 1; c[n_, i_] := a3418[2(n-1)] Binomial[2n-1, n-i] ((2i-1)/i/ Binomial[2n-1, n]);
    Table[c[n, i], {n, 1, 10}, {i, 1, n}] // Flatten (* Jean-François Alcover, Dec 04 2018 *)
  • PARI
    { A268512(n,i) = lcm(vector(2*(n-1),i,i)) * binomial(2*n-1,n-i) * (2*i-1) / i / binomial(2*n-1,n) }

Formula

c(n,i) = A003418(2*(n-1))*binomial(2*n-1,n-i)*(2*i-1)/i/binomial(2*n-1,n).

A068550 a(n) = lcm{1, ..., 2n} / binomial(2n, n).

Original entry on oeis.org

1, 1, 2, 3, 12, 10, 30, 105, 56, 252, 1260, 330, 1980, 2574, 2002, 15015, 240240, 61880, 15912, 151164, 38760, 406980, 4476780, 1144066, 13728792, 24515700, 6249100, 84362850, 21474180, 5462730, 81940950, 1270084725, 645122400
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2002

Keywords

Comments

Known to be always an integer.

Crossrefs

Bisection of A180000 and A263673.

Programs

  • Mathematica
    a[0] = 1; a[n_] := (LCM @@ Range[2*n])/Binomial[2*n, n]; Array[a, 33, 0] (* Amiram Eldar, Mar 06 2022 *)
  • PARI
    a(n) = lcm([1..2*n])/binomial(2*n, n); \\ Michel Marcus, Mar 06 2022

Formula

a(n) = A099996(n) / A000984(n) = A003418(2*n) / A001405(2*n) = A180000(2*n) = A263673(2*n).
a(n) = n * A068553(n) = n * A048619(2*n-1).

Extensions

a(0)=1 prepended by Max Alekseyev, Oct 23 2015

A093880 a(n) = lcm(1, 2, ..., 2n) / lcm(1, 2, ..., n).

Original entry on oeis.org

2, 6, 10, 70, 42, 462, 858, 858, 4862, 92378, 8398, 193154, 74290, 222870, 6463230, 200360130, 11785890, 11785890, 22951470, 22951470, 941010270, 40463441610, 1759280070, 82686163290, 115760628606, 115760628606, 2045104438706
Offset: 1

Views

Author

Amarnath Murthy, Apr 22 2004

Keywords

Comments

Also, lcm(n+1, n+2, ..., 2n-1, 2n) / lcm(1, 2, ..., n-1, n).

Examples

			The LCM of {1,2,3,4,5,6} is 60 and the LCM of {1,2,3} is 6, so a(3) = 60/6 = 10.
		

Crossrefs

Cf. A080397.

Programs

  • Maple
    a:=n->lcm(seq(j,j=n+1..2*n))/lcm(seq(j,j=1..n)): seq(a(n),n=1..32); # Emeric Deutsch, Feb 02 2006
  • Mathematica
    f[n_] := LCM @@ Table[i, {i, 2n}]/LCM @@ Table[i, {i, n}]; Table[ f[n], {n, 27}] (* Robert G. Wilson v, Jan 22 2005 *)

Formula

The prime number theorem implies that a(n) = e^(n(1+o(1))) as n -> infinity. In other words, log(a(n))/n -> 1 as n -> infinity. - Jonathan Sondow, Jan 17 2005
a(n) = A003418(2n)/A003418(n) = A099996(n)/A003418(n).

Extensions

More terms from Emeric Deutsch, Feb 02 2006
Entry revised by N. J. A. Sloane, Jan 24 2007

A263673 a(n) = lcm{1,2,...,n} / binomial(n,floor(n/2)).

Original entry on oeis.org

1, 1, 1, 2, 2, 6, 3, 12, 12, 20, 10, 60, 30, 210, 105, 56, 56, 504, 252, 2520, 1260, 660, 330, 3960, 1980, 5148, 2574, 4004, 2002, 30030, 15015, 240240, 240240, 123760, 61880, 31824, 15912, 302328, 151164, 77520, 38760, 813960, 406980, 8953560, 4476780, 2288132, 1144066, 27457584, 13728792, 49031400
Offset: 0

Views

Author

Max Alekseyev, Oct 23 2015

Keywords

Comments

From Robert Israel, Oct 23 2015: (Start)
If n = 2^k, a(n) = a(n-1).
If n = p^k where p is an odd prime and k >= 1, 2*n*a(n) = p*(n+1)*a(n-1).
If n is even and not a prime power, 2*a(n) = a(n-1).
If n is odd and not a prime power, 2*n*a(n) = (n+1)*a(n-1). (End)

Crossrefs

Programs

  • Maple
    a := n -> lcm(seq(k,k=1..n))/binomial(n,iquo(n,2)):
    seq(a(n), n=0..49); # Peter Luschny, Oct 23 2015
  • Mathematica
    Join[{1}, Table[LCM @@ Range[n]/Binomial[n, Floor[n/2]], {n, 1, 50}]] (* or *) Table[Product[Cyclotomic[k, 1], {k, 2, n}]/Binomial[n, Floor[n/2]], {n, 0, 50}] (* G. C. Greubel, Apr 17 2017 *)
  • PARI
    A263673(n) = lcm(vector(n,i,i)) / binomial(n,n\2);

Formula

a(n) = A003418(n) / A001405(n).
a(n) = A048619(n-1) * A110654(n).
a(2*n) = A068550(n) = A099996(n) / A000984(n).
a(n) = A180000(n)*A152271(n). - Peter Luschny, Oct 23 2015
a(n) = (e/2)^(n + o(1)). - Charles R Greathouse IV, Oct 23 2015

A120114 a(n) = lcm(1, ..., 2n+4)/lcm(1, ..., 2n+2).

Original entry on oeis.org

6, 5, 14, 3, 11, 13, 2, 17, 19, 1, 23, 5, 3, 29, 62, 1, 1, 37, 1, 41, 43, 1, 47, 7, 1, 53, 1, 1, 59, 61, 2, 1, 67, 1, 71, 73, 1, 1, 79, 3, 83, 1, 1, 89, 1, 1, 1, 97, 1, 101, 103, 1, 107, 109, 1, 113, 1, 1, 1, 11, 1, 5, 254, 1, 131, 1, 1, 137, 139, 1, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, Jun 09 2006

Keywords

Comments

The subdiagonal of A120113 is -a(n).
From Robert Israel, Dec 03 2024: (Start)
a(n) is the product of the primes p such that 2*n + 3 or 2*n + 4 is a power of p.
Thus: a(n) = 1 if and only if neither 2*n + 3 nor 2*n + 4 is in A000961.
if n + 1 = 2^k - 1 is a Mersenne number but not a Mersenne prime, then a(n) = 2;
if n + 1 = 2^k - 1 is a Mersenne prime, then a(n) = 2 * (2^k - 1);
otherwise a(n) is odd. (End)
Conjectures from Davide Rotondo, Dec 02 2024: (Start)
Except for 2, if a(n) is even then a(n)/2 is a Mersenne prime.
If a(n)=1 or a(n)=2 then (n*2)+3 is in A061346, or also, or (n+1) is in A083390. (End)

Crossrefs

Programs

  • GAP
    List([0..75],n->Lcm(List([1..2*n+4],i->i))/Lcm(List([1..2*n+2],i->i))); # Muniru A Asiru, Mar 04 2019
    
  • Magma
    A120114:= func< n | Lcm([1..2*n+4])/Lcm([1..2*n+2]) >;
    [A120114(n): n in [0..100]]; // G. C. Greubel, May 05 2023
    
  • Maple
    f:= proc(n) local t,x,S;
       t:= 1;
       for x from 2*n+3 to 2*n+4 do
         S:= numtheory:-factorset(x);
         if nops(S) = 1 then t:= t*S[1] fi;
       od;
       t
    end proc:
    map(f, [$0..100]); # Robert Israel, Dec 03 2024
  • Mathematica
    Table[(LCM@@Range[2n+4])/LCM@@Range[2n+2],{n,0,100}] (* Harvey P. Dale, Dec 15 2017 *)
  • SageMath
    def A120114(n):
        return lcm(range(1,2*n+5)) // lcm(range(1,2*n+3))
    [A120114(n) for n in range(101)] # G. C. Greubel, May 05 2023

Formula

a(n) = A099996(n+2)/A099996(n+1). - Michel Marcus, May 06 2023

Extensions

More terms from Harvey P. Dale, Dec 15 2017

A025540 Least common multiple of {C(0,0), C(2,1), ..., C(2n,n)}.

Original entry on oeis.org

1, 2, 6, 60, 420, 1260, 13860, 360360, 360360, 6126120, 116396280, 116396280, 2677114440, 13385572200, 40156716600, 2329089562800, 72201776446800, 72201776446800, 72201776446800, 2671465728531600, 2671465728531600
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A000984.

Programs

  • Mathematica
    Table[LCM@@Table[Binomial[2n,n],{n,0,i}],{i,0,30}] (* Harvey P. Dale, Jun 04 2012 *)
  • PARI
    a(n) = lcm(vector(n, k, binomial(2*k, k))); \\ Michel Marcus, Apr 13 2016

Formula

a(n) = 2^floor(log(n+1)/log(2)) * Prod( p^floor(log(2n)/log(p)) ), where the product is taken over all odd primes p below 2n. - Max Alekseyev, Apr 13 2016
If n = 2^k - 1, then a(n) = A099996(n) = A003418(2*n); otherwise a(n) = A099996(n)/2 = A003418(2*n)/2. - Max Alekseyev, Apr 13 2016

A156744 Coefficients for estimation of derivative from equally spaced numerical data using the Lagrange interpolating polynomial.

Original entry on oeis.org

-1, 0, 1, 1, -8, 0, 8, -1, -1, 9, -45, 0, 45, -9, 1, 3, -32, 168, -672, 0, 672, -168, 32, -3
Offset: 1

Views

Author

Bruce Boghosian, Feb 14 2009

Keywords

Comments

An effective way to approximate the derivative of equally spaced numerical data is to differentiate its Lagrange interpolating polynomial. If y[x] is equally spaced data from x = -n to +n, its Lagrange interpolating polynomial P(x) has degree 2*n+1. Then P'(0) may be expressed as a weighted sum over the y[x]. This is the triangle of coefficients C[n,m] such that P'(0) = (1/d[n]) * Sum_{m=-n}^n C[n,m] y[m]. The denominator d[n] is given by sequence A099996. This is very useful in numerical analysis. For example, when n=1, this gives the centered difference approximation to the derivative.

Examples

			Irregular triangle begins:
  -1, 0, 1;
  1, -8, 0, 8, -1;
  -1, 9, -45, 0, 45, -9, 1;
  3, -32, 168, -672, 0, 672, -168, 32, -3;
  -2, 25, -150, 600, -2100, 0, 2100, -600, 150, -25, 2;  ...
		

Crossrefs

When divided by sequence A099996, this triangle gives the coefficients needed to estimate derivatives from equally spaced numerical data using Lagrange interpolation. The first and last entry of each row of the triangle has absolute value lcm{1, 2, ..., 2*n}/n*binomial(2n, n), as seen in A068553.

Programs

  • Mathematica
    facs[x_, j_, n_] := Product[If[k == j, 1, x - k], {k, -n, n}]
    coefs[x_, n_] := Table[facs[x, j, n]/facs[j, j, n], {j, -n, n}]
    d[n_] := Apply[LCM, Table[j, {j, 1, 2*n}]]
    dCoefs[x_, n_] := d[n] D[coefs[y, n], y] /. {y -> x}
    MatrixForm[Table[dCoefs[0, n], {n, 1, 5}]]
Showing 1-9 of 9 results.