cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084974 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

7, 113, 1327, 1669, 2477, 2971, 3271, 4297, 4831, 5591, 31397, 34061, 43331, 44293, 58831, 155921, 370261, 492113, 604073, 1357201, 1561919, 2010733, 2127163, 2238823, 4652353, 6034247, 7230331, 8421251, 8917523, 11113933, 20831323
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) are the primes p(k) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=1327 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A084976 Values of k that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

4, 30, 217, 263, 367, 429, 462, 590, 650, 738, 3385, 3644, 4522, 4612, 5949, 14357, 31545, 40933, 49414, 104071, 118505, 149689, 157680, 165326, 325852, 415069, 491237, 566214, 597311, 733588, 1319945, 1736516, 2850174, 2857960, 3183065
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) are values of k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=217 because p(217)=1327, p(218)=1361 and Af(217) =sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m)for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A079098 Conjectured values of greatest k such that for any consecutive primes q, q', k <= q < q', sqrt(q')-sqrt(q) < 1/n.

Original entry on oeis.org

1, 113, 1327, 2971, 31397, 34061, 43331, 44293, 58831, 155921, 370261, 370261, 492113, 492113, 492113, 604073, 604073, 1357201, 1561919, 2010733, 2010733, 2010733, 2010733, 2010733, 2010733, 2010733, 2010733, 2238823, 4652353, 4652353, 4652353, 4652353
Offset: 1

Views

Author

Rainer Rosenthal, Feb 02 2003

Keywords

Comments

Inspired by Andrica's conjecture.
Each of these terms, k, has been tested to at least 100*k. - Sean A. Irvine, Jul 29 2025

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21

Crossrefs

Extensions

More terms from Sean A. Irvine, Jul 29 2025

A084975 Primes that show the slow decrease in the larger values of the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

11, 127, 1361, 1693, 2503, 2999, 3299, 4327, 4861, 5623, 31469, 34123, 43391, 44351, 58889, 156007, 370373, 492227, 604171, 1357333, 1562051, 2010881, 2127269, 2238931, 4652507, 6034393, 7230479, 8421403, 8917663, 11114087, 20831533
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) are the primes p(k+1) such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=1361 because p(218)=1361, p(217)=1327 and Af(217) = sqrt(1361) - sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A084977 Values that show the slow decrease in the Andrica function Af(k) = sqrt(p(k+1)) - sqrt(p(k)), where p(k) denotes the k-th prime.

Original entry on oeis.org

670873, 639281, 463722, 292684, 260522, 256245, 244265, 228429, 215476, 213675, 203053, 167894, 144069, 137748, 119533, 108882, 92024, 81248, 63042, 56651, 52808, 52185, 36338, 36089, 35698, 29717, 27520, 26189, 23440, 23096, 23005
Offset: 1

Views

Author

Harry J. Smith, Jun 16 2003

Keywords

Comments

a(n) = floor(1000000*Af(k)) with k such that Af(k) > Af(m) for all m > k. This sequence relies on a heuristic calculation and there is no proof that it is correct.

Examples

			a(3)=46372 because p(217)=1327, p(218)=1361 and Af(217) = sqrt(1361)- sqrt(1327) = 0.463722... is larger than any value of Af(m) for m>217.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", Springer-Verlag 1994, A8, p. 21.
  • P. Ribenboim, "The Little Book of Big Primes", Springer-Verlag 1991, p. 143.

Crossrefs

A079063 Least k such that sqrt(prime(n+k))-sqrt(prime(n))>1.

Original entry on oeis.org

3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 4, 4, 4, 3, 4, 4, 5, 4, 5, 4, 4, 4, 4, 5, 6, 5, 4, 4, 3, 3, 5, 5, 5, 5, 6, 5, 6, 5, 6, 7, 6, 5, 5, 4, 4, 4, 7, 7, 7, 6, 6, 6, 6, 8, 7, 7, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 7, 7, 8, 7, 7, 7, 7, 7, 6, 7, 6, 7, 7, 8, 8, 9, 9, 8, 8, 7, 8, 8, 8, 7, 7, 8, 7, 6, 6, 6, 5, 6, 6, 8, 8, 9, 9, 10
Offset: 1

Views

Author

Benoit Cloitre, Feb 02 2003

Keywords

Comments

Inspired by Andrica's conjecture. If it is true, a(n)>1 for all n.

Programs

  • PARI
    a(n)=if(n<0,0,k=1; while(abs(sqrt(prime(n+k))-sqrt(prime(n)))<1,k++); k)

Formula

Conjecture: there is a constant c>0 such that for n large enough, a(n)>c*sqrt(n) and we can take c=0.4. More precisely, there are 2 constants A and B such that A=lim sup n ->infinity a(n)/sqrt(n) exists = 0.75....; B=lim inf n ->infinity a(n)/sqrt(n) exists =0.46....
Showing 1-6 of 6 results.