cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A080855 a(n) = (9*n^2 - 3*n + 2)/2.

Original entry on oeis.org

1, 4, 16, 37, 67, 106, 154, 211, 277, 352, 436, 529, 631, 742, 862, 991, 1129, 1276, 1432, 1597, 1771, 1954, 2146, 2347, 2557, 2776, 3004, 3241, 3487, 3742, 4006, 4279, 4561, 4852, 5152, 5461, 5779, 6106, 6442, 6787, 7141, 7504, 7876, 8257, 8647, 9046
Offset: 0

Views

Author

Paul Barry, Feb 23 2003

Keywords

Comments

The old definition of this sequence was "Generalized polygonal numbers".
Row T(3,n) of A080853.
Equals binomial transform of [1, 3, 9, 0, 0, 0, ...] - Gary W. Adamson, Apr 30 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is congruent to 2 modulo 3. The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4, are 2+2, 5+5+2+2+2, 8+8+5+5+5+2+2+2, 11+11+8+8+8+5+5+5+2+2+2. - Augustine O. Munagi, Dec 18 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=3, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 3, a(n-1) = -coeff(charpoly(A,x), x^(n-2)). - Milan Janjic, Jan 27 2010

Crossrefs

Cf. A283394 (see Crossrefs section).

Programs

  • GAP
    List([0..50],n->(9*n^2-3*n+2)/2); # Muniru A Asiru, Nov 02 2018
  • Magma
    [(9*n^2 - 3*n +2)/2: n in [0..50]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    seq((9*n^2-3*n+2)/2,n=0..50); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 500, 9}]; lst (* Zerinvary Lajos, Jul 11 2009 *)
    Table[(9n^2-3n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1}, {1,4,16}, 50] (* Harvey P. Dale, Jul 24 2013 *)
  • PARI
    a(n)=binomial(3*n,2)+1 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

G.f.: (1 + x + 7*x^2)/(1 - x)^3.
a(n) = 9*n + a(n-1) - 6 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = n*A005448(n+1) - (n-1)*A005448(n), with A005448(0)=1. - Bruno Berselli, Jan 15 2013
a(0)=1, a(1)=4, a(2)=16; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 24 2013
a(n) = A152947(3*n+1). - Franck Maminirina Ramaharo, Jan 10 2018
E.g.f.: (2 + 6*x + 9*x^2)*exp(x)/2. - G. C. Greubel, Nov 02 2018
From Leo Tavares, Feb 20 2022: (Start)
a(n) = A003215(n-1) + 3*A000217(n). See Hexagonal Tri-Rays illustration in links.
a(n) = A227776(n) - 3*A000217(n). (End)

Extensions

Definition replaced with the closed form by Bruno Berselli, Jan 15 2013