A080855 a(n) = (9*n^2 - 3*n + 2)/2.
1, 4, 16, 37, 67, 106, 154, 211, 277, 352, 436, 529, 631, 742, 862, 991, 1129, 1276, 1432, 1597, 1771, 1954, 2146, 2347, 2557, 2776, 3004, 3241, 3487, 3742, 4006, 4279, 4561, 4852, 5152, 5461, 5779, 6106, 6442, 6787, 7141, 7504, 7876, 8257, 8647, 9046
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- A. O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Leo Tavares, Illustration: Hexagonal Tri-Rays
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..50],n->(9*n^2-3*n+2)/2); # Muniru A Asiru, Nov 02 2018
-
Magma
[(9*n^2 - 3*n +2)/2: n in [0..50]]; // G. C. Greubel, Nov 02 2018
-
Maple
seq((9*n^2-3*n+2)/2,n=0..50); # Muniru A Asiru, Nov 02 2018
-
Mathematica
s = 1; lst = {s}; Do[s += n + 2; AppendTo[lst, s], {n, 1, 500, 9}]; lst (* Zerinvary Lajos, Jul 11 2009 *) Table[(9n^2-3n+2)/2,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1}, {1,4,16}, 50] (* Harvey P. Dale, Jul 24 2013 *)
-
PARI
a(n)=binomial(3*n,2)+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
G.f.: (1 + x + 7*x^2)/(1 - x)^3.
a(n) = 9*n + a(n-1) - 6 with n > 0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(0)=1, a(1)=4, a(2)=16; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jul 24 2013
a(n) = A152947(3*n+1). - Franck Maminirina Ramaharo, Jan 10 2018
E.g.f.: (2 + 6*x + 9*x^2)*exp(x)/2. - G. C. Greubel, Nov 02 2018
From Leo Tavares, Feb 20 2022: (Start)
Extensions
Definition replaced with the closed form by Bruno Berselli, Jan 15 2013
Comments