A028491
Numbers k such that (3^k - 1)/2 is prime.
Original entry on oeis.org
3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, 2215303, 2704981, 3598867, 7973131, 8530117
Offset: 1
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Antal Bege and Kinga Fogarasi, Generalized perfect numbers, arXiv:1008.0155 [math.NT], 2010. See p. 81.
- Paul Bourdelais, A Generalized Repunit Conjecture, Posting in NMBRTHRY@LISTSERV.NODAK.EDU, Jun 25, 2009.
- J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
- Christian Salas, Cantor Primes as Prime-Valued Cyclotomic Polynomials, arXiv:1203.3969 [math.NT], 2012.
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Repunit
- Index to primes in various ranges, form ((k+1)^n-1)/k
All larger terms only correspond to probable primes.
A165767
Numbers m such that 2^m-m is a semiprime.
Original entry on oeis.org
6, 7, 15, 18, 25, 31, 33, 39, 42, 45, 49, 62, 73, 85, 93, 103, 119, 171, 187, 193, 199, 201, 269, 367, 379, 405, 413, 449, 459, 481, 489, 549, 577, 601, 631, 669, 787, 795, 1399
Offset: 1
199 is in this sequence because 2^199-199 = 17377902756647509 * 46235097144973199564251065756966919577339221 and these two factors are prime.
-
Select[Range[1000], PrimeOmega[2^# - #]==2 &] (* Vincenzo Librandi, Dec 19 2014 *)
-
for( i=1,200, bigomega(2^i-i)==2 & print1(i","))
A080798
Largest prime factor of 3^n-2.
Original entry on oeis.org
7, 5, 79, 241, 727, 23, 937, 19681, 431, 499, 4703, 8093, 40193, 2869781, 483671, 94747, 4657, 232452293, 498112057, 2812679, 31381059607, 3765727153, 1364071, 44594137339, 125231, 13170403, 5353801183, 4159349, 46050353857, 294487079, 26892769, 29178816413, 3533781113
Offset: 2
-
[Max(PrimeDivisors(3^n-2)):n in [2..30]]; // Marius A. Burtea, Jul 12 2019
-
FactorInteger[#][[-1,1]]&/@(3^Range[2,30]-2) (* Harvey P. Dale, Apr 07 2022 *)
-
a(n) = vecmax(factor(3^n-2)[,1]); \\ Michel Marcus, Jul 12 2019
A081715
Numbers n such that 3^n+2 is a semiprime.
Original entry on oeis.org
6, 7, 11, 12, 20, 27, 28, 40, 44, 60, 71, 84, 108, 118, 145, 156, 160, 211, 263, 295, 296, 304, 306, 316, 351, 474, 488, 495
Offset: 1
a(1)=6 because 3^6+2=731=17*43, a(2)=7 because 3^7+2=2189=11*199.
a(1)=6 because 3^6+2=731=17*43
a(2)=7 because 3^7+2=2189=11*199
a(3)=11 because 3^11+2=177149=7*25307
a(4)=12 because 3^12+2=531443=11*48313
a(5)=20 because 3^20+2=3486784403=58027*60089
a(6)=27 because 3^27+2=7625597484989=11*693236134999
a(7)=28 because 3^28+2=22876792454963=131*174632003473
a(8)=40 because 3^40+2=12157665459056928803=1170408739*10387538177
a(9)=44 because 3^44+2=984770902183611232883=21577*45639843452917979
a(10)=60 because 3^60+2=42391158275216203514294433203=89*476305149159732623756117227
a(11)=71 because 3^71+2=7509466514979724803946715958257549=7*1072780930711389257706673708322507
a(12)=84 because 3^84+2=11972515182562019788602740026717047105683=13483993*887905769645684315365837109728331
a(13)=108 because 3^108+2=3381391913522726342930221472392241170198527451848563=671633*5034582746116891729456744192724659405059798211
a(14)=118 because 3^118+2=199667811101603467823686647723289448859052847504205678491=17*11745165358917851048452155748428791109356049853188569323
a(15)=145 because 3^145+2=1522586358169246802159262479225089070726226750574991661790882326344645=5*304517271633849360431852495845017814145245350114998332358176465268929
a(16)=156 because 3^156+2=269721605590607563262106870407286853611938890184108047911269431464974473523=21883136019044570108827*12325546272521124629737118652366725946328428459583049
a(17)=160 because 3^160+2=21847450052839212624230656502990235142567050104912751880812823948662932355203=19*1149865792254695401275297710683696586450897373942776414779622313087522755537
a(18)=211 because 3^211+2=47052721287394587764057094854672253553918218437190874778408030747195017485692977810906266281547645149=97*485079600900975131588217472728579933545548643682380152354721966465928015316422451658827487438635517
a(19)=263 because 3^263+2=304011485348815530556923313708989269910796626718253224787639751028488890841299195402970869140037716024202112537180443065484429=7*43430212192687932936703330529855609987256660959750460683948535861212698691614170771852981305719673717743158933882920437926347
a(20)=295 because 3^295+2=563339419994190847700930153835754386693266237141306322927902016783411511018514718493004963603658195013376479179415613344911575031957595780109=3535513*159337391771488564092659298335419608609349261943402929908022404891004929417177851840172830252259911083165718575894251653129708484159893
-
for(n=1, 295, if(bigomega(3^n+2)==2, print1(n", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007
2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007
Showing 1-4 of 4 results.
Comments