cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A028491 Numbers k such that (3^k - 1)/2 is prime.

Original entry on oeis.org

3, 7, 13, 71, 103, 541, 1091, 1367, 1627, 4177, 9011, 9551, 36913, 43063, 49681, 57917, 483611, 877843, 2215303, 2704981, 3598867, 7973131, 8530117
Offset: 1

Views

Author

N. J. A. Sloane, Jean-Yves Perrier (nperrj(AT)ascom.ch)

Keywords

Comments

If k is in the sequence and m=3^(k-1) then m is a term of A033632 (phi(sigma(m)) = sigma(phi(m))), so 3^(A028491-1) is a subsequence of A033632. For example since 9551 is in the sequence, phi(sigma(3^9550)) = sigma(phi(3^9550)). - Farideh Firoozbakht, Feb 09 2005
Salas lists these, except 3, in "Open Problems" p. 6 [March 2012], and proves that the Cantor primes > 3 are exactly the prime-valued cyclotomic polynomials of the form Phi_s(3^{s^j}) == 1 (mod 4).
Also, k such that 3^k-1 is a semiprime - see also A080892. - M. F. Hasler, Mar 19 2013

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

a(13) from Farideh Firoozbakht, Mar 27 2005
a(14)-a(16) from Robert G. Wilson v, Apr 11 2005
All larger terms only correspond to probable primes.
a(17) from Paul Bourdelais, Feb 08 2010
a(18) from Paul Bourdelais, Jul 06 2010
a(19) from Paul Bourdelais, Feb 05 2019
a(20) and a(21) from Ryan Propper, Dec 29 2021
a(22) from Ryan Propper, Nov 06 2023
a(23) from Ryan Propper, Nov 09 2023

A165767 Numbers m such that 2^m-m is a semiprime.

Original entry on oeis.org

6, 7, 15, 18, 25, 31, 33, 39, 42, 45, 49, 62, 73, 85, 93, 103, 119, 171, 187, 193, 199, 201, 269, 367, 379, 405, 413, 449, 459, 481, 489, 549, 577, 601, 631, 669, 787, 795, 1399
Offset: 1

Views

Author

M. F. Hasler, Oct 08 2009, Oct 29 2009

Keywords

Comments

The largest resp. smallest prime factor of 2^a(n)-a(n) is listed in A165768 resp. A165769.
a(40) >= 1489. - Max Alekseyev, Aug 05 2019
1501, 1587, 1667, 2250, 3393, 5845, 9967, 16147 are terms of this sequence. - Chai Wah Wu, Oct 18 2019

Examples

			199 is in this sequence because 2^199-199 = 17377902756647509 * 46235097144973199564251065756966919577339221 and these two factors are prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], PrimeOmega[2^# - #]==2 &] (* Vincenzo Librandi, Dec 19 2014 *)
  • PARI
    for( i=1,200, bigomega(2^i-i)==2 & print1(i","))

Formula

2^a(n)-a(n) = A165768(n)*A165769(n) is a semiprime.
a(n)=2k <=> 4^k/2-k is prime <=> A165768(n)=2.

Extensions

More terms from Sean A. Irvine, Oct 22 2009
a(36)-a(37) from Max Alekseyev, Jun 06 2013
a(38) from Sean A. Irvine, Mar 17 2015
a(39) from Sean A. Irvine, Jun 29 2015

A080798 Largest prime factor of 3^n-2.

Original entry on oeis.org

7, 5, 79, 241, 727, 23, 937, 19681, 431, 499, 4703, 8093, 40193, 2869781, 483671, 94747, 4657, 232452293, 498112057, 2812679, 31381059607, 3765727153, 1364071, 44594137339, 125231, 13170403, 5353801183, 4159349, 46050353857, 294487079, 26892769, 29178816413, 3533781113
Offset: 2

Views

Author

Hugo Pfoertner, Mar 25 2003

Keywords

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(3^n-2)):n in [2..30]]; // Marius A. Burtea, Jul 12 2019
  • Mathematica
    FactorInteger[#][[-1,1]]&/@(3^Range[2,30]-2) (* Harvey P. Dale, Apr 07 2022 *)
  • PARI
    a(n) = vecmax(factor(3^n-2)[,1]); \\ Michel Marcus, Jul 12 2019
    

Formula

a(n) = A006530(A058481(n)). - Michel Marcus, Jul 12 2019

A081715 Numbers n such that 3^n+2 is a semiprime.

Original entry on oeis.org

6, 7, 11, 12, 20, 27, 28, 40, 44, 60, 71, 84, 108, 118, 145, 156, 160, 211, 263, 295, 296, 304, 306, 316, 351, 474, 488, 495
Offset: 1

Views

Author

Hugo Pfoertner, Apr 04 2003

Keywords

Comments

a(29) >= 514. - Hugo Pfoertner, Jul 24 2019
531, 562, 676, 760, 807, 866, 1059, 1502, 1659, 2539, 2656, 3070, 3163, 4014, 5736, 5966, 6680, 6745, 7192, 7861, 8104, 9703, 10014 are terms of this sequence. - Chai Wah Wu, Oct 18 2019

Examples

			a(1)=6 because 3^6+2=731=17*43, a(2)=7 because 3^7+2=2189=11*199.
a(1)=6 because 3^6+2=731=17*43
a(2)=7 because 3^7+2=2189=11*199
a(3)=11 because 3^11+2=177149=7*25307
a(4)=12 because 3^12+2=531443=11*48313
a(5)=20 because 3^20+2=3486784403=58027*60089
a(6)=27 because 3^27+2=7625597484989=11*693236134999
a(7)=28 because 3^28+2=22876792454963=131*174632003473
a(8)=40 because 3^40+2=12157665459056928803=1170408739*10387538177
a(9)=44 because 3^44+2=984770902183611232883=21577*45639843452917979
a(10)=60 because 3^60+2=42391158275216203514294433203=89*476305149159732623756117227
a(11)=71 because 3^71+2=7509466514979724803946715958257549=7*1072780930711389257706673708322507
a(12)=84 because 3^84+2=11972515182562019788602740026717047105683=13483993*887905769645684315365837109728331
a(13)=108 because 3^108+2=3381391913522726342930221472392241170198527451848563=671633*5034582746116891729456744192724659405059798211
a(14)=118 because 3^118+2=199667811101603467823686647723289448859052847504205678491=17*11745165358917851048452155748428791109356049853188569323
a(15)=145 because 3^145+2=1522586358169246802159262479225089070726226750574991661790882326344645=5*304517271633849360431852495845017814145245350114998332358176465268929
a(16)=156 because 3^156+2=269721605590607563262106870407286853611938890184108047911269431464974473523=21883136019044570108827*12325546272521124629737118652366725946328428459583049
a(17)=160 because 3^160+2=21847450052839212624230656502990235142567050104912751880812823948662932355203=19*1149865792254695401275297710683696586450897373942776414779622313087522755537
a(18)=211 because 3^211+2=47052721287394587764057094854672253553918218437190874778408030747195017485692977810906266281547645149=97*485079600900975131588217472728579933545548643682380152354721966465928015316422451658827487438635517
a(19)=263 because 3^263+2=304011485348815530556923313708989269910796626718253224787639751028488890841299195402970869140037716024202112537180443065484429=7*43430212192687932936703330529855609987256660959750460683948535861212698691614170771852981305719673717743158933882920437926347
a(20)=295 because 3^295+2=563339419994190847700930153835754386693266237141306322927902016783411511018514718493004963603658195013376479179415613344911575031957595780109=3535513*159337391771488564092659298335419608609349261943402929908022404891004929417177851840172830252259911083165718575894251653129708484159893
		

Crossrefs

Programs

  • PARI
    for(n=1, 295, if(bigomega(3^n+2)==2, print1(n", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007

Extensions

2 more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Apr 25 2007
More terms from Sean A. Irvine, Mar 21 2010
Showing 1-4 of 4 results.