cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A083042 Duplicate of A082977.

Original entry on oeis.org

0, 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 30, 32, 34, 36, 37, 39
Offset: 0

Views

Author

Keywords

A060107 Numbers that are congruent to {0, 2, 3, 5, 7, 8, 10} mod 12. The ivory keys on a piano, start with A0 = the 0th key.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 10, 12, 14, 15, 17, 19, 20, 22, 24, 26, 27, 29, 31, 32, 34, 36, 38, 39, 41, 43, 44, 46, 48, 50, 51, 53, 55, 56, 58, 60, 62, 63, 65, 67, 68, 70, 72, 74, 75, 77, 79, 80, 82, 84, 86, 87, 89, 91, 92, 94, 96, 98, 99, 101, 103, 104, 106, 108, 110, 111, 113, 115
Offset: 1

Views

Author

Henry Bottomley, Feb 27 2001

Keywords

Comments

More precisely, the key-numbers of the pitches of a minor scale on a standard chromatic keyboard, with root = 0 and flat seventh.
Also key-numbers of the pitches of an Aeolian mode scale on a standard chromatic keyboard, with root = 0. An Aeolian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone A.
A piano sequence since if a(n) < 88 then A059620(a(n)) = 0.

Crossrefs

Cf. A059620, A081031. Complement of A060106.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): this sequence (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 8, 10]]; // Wesley Ivan Hurt, Jul 20 2016
    
  • Maple
    A060107:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 8, 10][(n mod 7)+1]: seq(A060107(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Select[Range[0,120], MemberQ[{0,2,3,5,7,8,10}, Mod[#,12]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1}, {0,2,3,5,7,8,10,12}, 70] (* Harvey P. Dale, Nov 10 2011 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(2+x+2*x^2+2*x^3+x^4+2*x^5+2*x^6)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

Formula

a(n) = a(n-7) + 12 for n > 7.
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
G.f.: x^2*(2 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = (84*n - 91 - 2*(n mod 7) + 5*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.
a(7k) = 12k - 2, a(7k-1) = 12k - 4, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = A081031(n) - 1 for 1 <= n <= 36. - Jianing Song, Oct 14 2019

A083026 Numbers that are congruent to {0, 2, 4, 5, 7, 9, 11} mod 12.

Original entry on oeis.org

0, 2, 4, 5, 7, 9, 11, 12, 14, 16, 17, 19, 21, 23, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 65, 67, 69, 71, 72, 74, 76, 77, 79, 81, 83, 84, 86, 88, 89, 91, 93, 95, 96, 98, 100, 101, 103, 105, 107, 108, 110
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a major scale on a standard chromatic keyboard, with root = 0.
Also key-numbers of the pitches of an Ionian mode scale on a standard chromatic keyboard, with root = 0. An Ionian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone C.
Cumulative sum of A291454. - Halfdan Skjerning, Aug 30 2017

Crossrefs

Cf. A291454.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): this sequence
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 2, 4, 5, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
    
  • Maple
    A083026:=n->12*floor(n/7)+[0, 2, 4, 5, 7, 9, 11][(n mod 7)+1]: seq(A083026(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 2, 4, 5, 7, 9, 11}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 5, 7, 9, 11, 12}, 70] (* Jianing Song, Sep 22 2018 *)
    Quotient[12*Range[60], 7] - 1 (* Federico Provvedi, Sep 10 2022 *)
  • PARI
    a(n)=[-1, 0, 2, 4, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(x+1)*(x^5+x^4+x^3+x^2+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

Formula

G.f.: x^2*(x + 1)*(x^5 + x^4 + x^3 + x^2 + 2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 70 - 2*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) + 5*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018

A083028 Numbers that are congruent to {0, 2, 3, 5, 7, 8, 11} mod 12.

Original entry on oeis.org

0, 2, 3, 5, 7, 8, 11, 12, 14, 15, 17, 19, 20, 23, 24, 26, 27, 29, 31, 32, 35, 36, 38, 39, 41, 43, 44, 47, 48, 50, 51, 53, 55, 56, 59, 60, 62, 63, 65, 67, 68, 71, 72, 74, 75, 77, 79, 80, 83, 84, 86, 87, 89, 91, 92, 95, 96, 98, 99, 101, 103, 104, 107, 108, 110, 111
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

The key-numbers of the pitches of a minor scale on a standard chromatic keyboard, with root = 0 and raised seventh.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: this sequence)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 8, 11]]; // Wesley Ivan Hurt, Jul 19 2016
    
  • Maple
    A083028:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 8, 11][(n mod 7)+1]: seq(A083028(n), n=0..100); # Wesley Ivan Hurt, Jul 19 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 7, 8, 11}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 19 2016 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 7, 8, 11, 12}, 70] (* Jianing Song, Sep 22 2018 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(1+x)*(x^5+2*x^4-x^3+3*x^2-x+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

Formula

G.f.: x^2*(x + 1)*(x^5 + 2*x^4 - x^3 + 3*x^2 - x + 2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 19 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 84 - 9*(n mod 7) + 5*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k-1) = 12k - 4, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k - 4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018

A083032 Numbers that are congruent to {0, 4, 7, 10} mod 12.

Original entry on oeis.org

0, 4, 7, 10, 12, 16, 19, 22, 24, 28, 31, 34, 36, 40, 43, 46, 48, 52, 55, 58, 60, 64, 67, 70, 72, 76, 79, 82, 84, 88, 91, 94, 96, 100, 103, 106, 108, 112, 115, 118, 120, 124, 127, 130, 132, 136, 139, 142, 144, 148, 151, 154, 156, 160, 163, 166, 168, 172
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a dominant seventh chord on a standard chromatic keyboard, with root = 0.

Crossrefs

Bisections: A016957, A272975.
A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: this sequence

Programs

  • GAP
    Filtered([0..200],n-> n mod 12=0 or n mod 12=4 or n mod 12=7 or n mod 12=10); # Muniru A Asiru, Sep 22 2018
  • Magma
    [(12*n-9+(-1)^n+(-1)^((n+1) div 2)+(-1)^(-(n+1) div 2))/4: n in [1..100]]; // Wesley Ivan Hurt, May 19 2016
    
  • Maple
    A083032:=n->(12*n-9+(-1)^n+(-1)^((n+1)/2)+(-1)^(-(n+1)/2))/4: seq(A083032(n), n=1..100); # Wesley Ivan Hurt, May 19 2016
  • Mathematica
    Select[Range[0,200], MemberQ[{0,4,7,10}, Mod[#,12]]&] (* Harvey P. Dale, Sep 13 2011 *)
    LinearRecurrence[{1,0,0,1,-1},{0,4,7,10,12},100] (* G. C. Greubel, Jun 01 2016 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(4+3*x+3*x^2+2*x^3)/((1+x)*(1+x^2)*(1-x)^2))) \\ Altug Alkan, Sep 21 2018
    

Formula

G.f.: x^2*(4 + 3*x + 3*x^2 + 2*x^3)/((1 + x)*(1 + x^2)*(1 - x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 19 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
a(n) = (12*n - 9 + (-1)^n + (-1)^((n+1)/2) + (-1)^(-(n+1)/2))/4. (End)
a(2k) = A016957(k-1) for k > 0, a(2k-1) = A272975(k). - Wesley Ivan Hurt, Jun 01 2016
E.g.f.: (4 - sin(x) + (6*x - 5)*sinh(x) + (6*x - 4)*cosh(x))/2. - Ilya Gutkovskiy, Jun 01 2016
From Jianing Song, Sep 22 2018: (Start)
a(n) = (12*n - 9 + (-1)^n - 2*sin(n*Pi/2))/4.
a(n) = a(n-4) + 12 for n > 4. (End)
Sum_{n>=2} (-1)^n/a(n) = log(3)/8 - log(2)/12 + sqrt(3)*log(sqrt(3)+2)/12 - (5*sqrt(3)-6)*Pi/72. - Amiram Eldar, Dec 31 2021

A083033 Numbers that are congruent to {0, 2, 3, 5, 7, 9, 10} mod 12.

Original entry on oeis.org

0, 2, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 21, 22, 24, 26, 27, 29, 31, 33, 34, 36, 38, 39, 41, 43, 45, 46, 48, 50, 51, 53, 55, 57, 58, 60, 62, 63, 65, 67, 69, 70, 72, 74, 75, 77, 79, 81, 82, 84, 86, 87, 89, 91, 93, 94, 96, 98, 99, 101, 103, 105, 106, 108, 110, 111
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a Dorian mode scale on a standard chromatic keyboard, with root = 0. A Dorian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone D.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): this sequence
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • GAP
    Filtered([0..120],n-> n mod 12=0 or n mod 12=2 or n mod 12=3 or n mod 12=5 or n mod 12=7 or n mod 12=9 or n mod 12=10); # Muniru A Asiru, Sep 22 2018
  • Magma
    [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 9, 10]]; // Wesley Ivan Hurt, Jul 20 2016
    
  • Maple
    A083033:= n-> 12*floor((n-1)/7)+[0, 2, 3, 5, 7, 9, 10][((n-1) mod 7)+1]:
    seq(A083033(n), n=1..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 7, 9, 10}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 7, 9, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *)
    Quotient[3 (4#-3), 7] & /@ Range[96] (* Federico Provvedi, Nov 06 2023 *)
  • PARI
    a(n)=[-2, 0, 2, 3, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016
    
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(x^2+1)*(2*x^4+x^3+x+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
    

Formula

G.f.: x^2*(x^2 + 1)*(2*x^4 + x^3 + x + 2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 84 + 5*(n mod 7) - 2*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.
a(7k) = 12k - 2, a(7k-1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
a(n) = floor(3 * (4*n - 3) / 7). - Federico Provvedi, Nov 06 2023

A083089 Numbers that are congruent to {0, 2, 4, 6, 7, 9, 11} mod 12.

Original entry on oeis.org

0, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 72, 74, 76, 78, 79, 81, 83, 84, 86, 88, 90, 91, 93, 95, 96, 98, 100, 102, 103, 105, 107, 108, 110
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a Lydian mode scale on a standard chromatic keyboard, with root = 0. A Lydian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone F.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): this sequence
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 2, 4, 6, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
    
  • Maple
    A083089:=n->12*floor(n/7)+[0, 2, 4, 6, 7, 9, 11][(n mod 7)+1]: seq(A083089(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Select[Range[0,200],MemberQ[{0,2,4,6,7,9,11},Mod[#,12]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,2,4,6,7,9,11,12},90] (* Harvey P. Dale, Mar 29 2016 *)
  • PARI
    a(n) = 2*(n-1)-2*(n-1)\7; \\ Altug Alkan, Sep 21 2018
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(x^4+x^3+2)*(1+x+x^2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

Formula

G.f.: x^2*(x^4 + x^3 + 2)*(1 + x + x^2)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 63 - 2*(n mod 7) - 2*((n + 1) mod 7) + 5*((n + 2) mod 7) - 2*((n + 3) mod 7) - 2*((n + 4) mod 7) - 2*((n + 5) mod 7) + 5*((n + 6) mod 7))/49.
a(7k) = 12k - 1, a(7k - 1) = 12k - 3, a(7k-2) = 12k - 5, a(7k-3) = 12k - 6, a(7k-4) = 12k - 8, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)
a(n) = 2*n - 2 - floor(2*(n - 1)/7). - Wesley Ivan Hurt, Sep 29 2017
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018

A083030 Numbers that are congruent to {0, 4, 7} mod 12.

Original entry on oeis.org

0, 4, 7, 12, 16, 19, 24, 28, 31, 36, 40, 43, 48, 52, 55, 60, 64, 67, 72, 76, 79, 84, 88, 91, 96, 100, 103, 108, 112, 115, 120, 124, 127, 132, 136, 139, 144, 148, 151, 156, 160, 163, 168, 172, 175, 180, 184, 187, 192, 196, 199, 204, 208, 211, 216, 220
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a major common chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: this sequence
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..300] | n mod 12 in [0, 4, 7]]; // Wesley Ivan Hurt, Jun 14 2016
    
  • Maple
    A083030:=n->4*n-(13+2*cos(2*n*Pi/3))/3: seq(A083030(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    Select[Range[0,250], MemberQ[{0,4,7}, Mod[#,12]]&] (* Harvey P. Dale, Apr 17 2014 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 4, 7, 12}, 100] (* Jianing Song, Sep 22 2018 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(4+3*x+5*x^2)/((1+x+x^2)*(1-x)^2))) \\ Jianing Song, Sep 22 2018

Formula

G.f.: x^2*(4 + 3*x + 5*x^2)/((1 + x + x^2)*(1 - x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
a(n) = 4*n - (13 + 2*cos(2*n*Pi/3))/3.
a(3k) = 12k - 5, a(3k-1) = 12k - 8, a(3k-2) = 12k - 12. (End)
a(n) = a(n-3) + 12 for n > 3. - Jianing Song, Sep 22 2018

A083031 Numbers that are congruent to {0, 3, 7} mod 12.

Original entry on oeis.org

0, 3, 7, 12, 15, 19, 24, 27, 31, 36, 39, 43, 48, 51, 55, 60, 63, 67, 72, 75, 79, 84, 87, 91, 96, 99, 103, 108, 111, 115, 120, 123, 127, 132, 135, 139, 144, 147, 151, 156, 159, 163, 168, 171, 175, 180, 183, 187, 192, 195, 199, 204, 207, 211, 216, 219
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a minor common chord on a standard chromatic keyboard, with root = 0.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): A083034
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: this sequence
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..300] | n mod 12 in [0, 3, 7]]; // Wesley Ivan Hurt, Jun 14 2016
    
  • Maple
    A083031:=n->(12*n-14-cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A083031(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    Select[Range[0, 400], MemberQ[{0, 3, 7}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jun 14 2016 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 3, 7, 12}, 100] (* Jianing Song, Sep 22 2018 *)
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(3+4*x+5*x^2)/((1+x+x^2)*(1-x)^2))) \\ Jianing Song, Sep 22 2018

Formula

G.f.: x^2*(3 + 4*x + 5*x^2)/((1 + x + x^2)*(1 - x)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n > 4.
a(n) = (12*n - 14 - cos(2*n*Pi/3) + sqrt(3)*sin(2*n*Pi/3))/3.
a(3k) = 12k - 5, a(3k-1) = 12k - 9, a(3k-2) = 12k - 12. (End)
a(n) = a(n-3) + 12 for n > 3. - Jianing Song, Sep 22 2018

A083034 Numbers that are congruent to {0, 1, 3, 5, 7, 8, 10} mod 12.

Original entry on oeis.org

0, 1, 3, 5, 7, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, 32, 34, 36, 37, 39, 41, 43, 44, 46, 48, 49, 51, 53, 55, 56, 58, 60, 61, 63, 65, 67, 68, 70, 72, 73, 75, 77, 79, 80, 82, 84, 85, 87, 89, 91, 92, 94, 96, 97, 99, 101, 103, 104, 106, 108, 109, 111
Offset: 1

Views

Author

James Ingram (j.ingram(AT)t-online.de), Jun 01 2003

Keywords

Comments

Key-numbers of the pitches of a Phrygian mode scale on a standard chromatic keyboard, with root = 0. A Phrygian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone E.

Crossrefs

A guide for some sequences related to modes and chords:
Modes:
Lydian mode (F): A083089
Ionian mode (C): A083026
Mixolydian mode (G): A083120
Dorian mode (D): A083033
Aeolian mode (A): A060107 (raised seventh: A083028)
Phrygian mode (E): this sequence
Locrian mode (B): A082977
Chords:
Major chord: A083030
Minor chord: A083031
Dominant seventh chord: A083032

Programs

  • Magma
    [n : n in [0..150] | n mod 12 in [0, 1, 3, 5, 7, 8, 10]]; // Wesley Ivan Hurt, Jul 20 2016
    
  • Maple
    A083034:= n-> 12*floor((n-1)/7)+[0, 1, 3, 5, 7, 8, 10][((n-1) mod 7)+1]:
    seq(A083034(n), n=1..100); # Wesley Ivan Hurt, Jul 20 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{0, 1, 3, 5, 7, 8, 10}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *)
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 5, 7, 8, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *)
    Quotient[12 # - 11, 7] & /@ Range[96] (* Federico Provvedi, Nov 06 2023 *)
  • PARI
    my(x='x+O('x^99)); concat(0, Vec(x^2*(x+1)*(2*x^5+x^3+x^2+x+1)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018

Formula

G.f.: x^2*(x + 1)*(2*x^5 + x^3 + x^2 + x + 1)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 20 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
a(n) = (84*n - 98 - 2*(n mod 7) + 5*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) - 2*((n + 4) mod 7) + 5*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.
a(7k) = 12k - 2, a(7k-1) = 12k - 4, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 11, a(7k-6) = 12k - 12. (End)
a(n) = a(n-7) + 12 for n > 7. - Jianing Song, Sep 22 2018
a(n) = floor((12*n - 11) / 7). - Federico Provvedi, Nov 06 2023
Showing 1-10 of 17 results. Next