A083042 Duplicate of A082977.
0, 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 18, 20, 22, 24, 25, 27, 29, 30, 32, 34, 36, 37, 39
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 8, 10]]; // Wesley Ivan Hurt, Jul 20 2016
A060107:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 8, 10][(n mod 7)+1]: seq(A060107(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
Select[Range[0,120], MemberQ[{0,2,3,5,7,8,10}, Mod[#,12]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1}, {0,2,3,5,7,8,10,12}, 70] (* Harvey P. Dale, Nov 10 2011 *)
x='x+O('x^99); concat(0, Vec(x^2*(2+x+2*x^2+2*x^3+x^4+2*x^5+2*x^6)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
[n : n in [0..150] | n mod 12 in [0, 2, 4, 5, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
A083026:=n->12*floor(n/7)+[0, 2, 4, 5, 7, 9, 11][(n mod 7)+1]: seq(A083026(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
Select[Range[0, 150], MemberQ[{0, 2, 4, 5, 7, 9, 11}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 4, 5, 7, 9, 11, 12}, 70] (* Jianing Song, Sep 22 2018 *) Quotient[12*Range[60], 7] - 1 (* Federico Provvedi, Sep 10 2022 *)
a(n)=[-1, 0, 2, 4, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016
x='x+O('x^99); concat(0, Vec(x^2*(x+1)*(x^5+x^4+x^3+x^2+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
[n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 8, 11]]; // Wesley Ivan Hurt, Jul 19 2016
A083028:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 8, 11][(n mod 7)+1]: seq(A083028(n), n=0..100); # Wesley Ivan Hurt, Jul 19 2016
Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 7, 8, 11}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 19 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 7, 8, 11, 12}, 70] (* Jianing Song, Sep 22 2018 *)
x='x+O('x^99); concat(0, Vec(x^2*(1+x)*(x^5+2*x^4-x^3+3*x^2-x+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
Filtered([0..200],n-> n mod 12=0 or n mod 12=4 or n mod 12=7 or n mod 12=10); # Muniru A Asiru, Sep 22 2018
[(12*n-9+(-1)^n+(-1)^((n+1) div 2)+(-1)^(-(n+1) div 2))/4: n in [1..100]]; // Wesley Ivan Hurt, May 19 2016
A083032:=n->(12*n-9+(-1)^n+(-1)^((n+1)/2)+(-1)^(-(n+1)/2))/4: seq(A083032(n), n=1..100); # Wesley Ivan Hurt, May 19 2016
Select[Range[0,200], MemberQ[{0,4,7,10}, Mod[#,12]]&] (* Harvey P. Dale, Sep 13 2011 *) LinearRecurrence[{1,0,0,1,-1},{0,4,7,10,12},100] (* G. C. Greubel, Jun 01 2016 *)
my(x='x+O('x^99)); concat(0, Vec(x^2*(4+3*x+3*x^2+2*x^3)/((1+x)*(1+x^2)*(1-x)^2))) \\ Altug Alkan, Sep 21 2018
Filtered([0..120],n-> n mod 12=0 or n mod 12=2 or n mod 12=3 or n mod 12=5 or n mod 12=7 or n mod 12=9 or n mod 12=10); # Muniru A Asiru, Sep 22 2018
[n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 9, 10]]; // Wesley Ivan Hurt, Jul 20 2016
A083033:= n-> 12*floor((n-1)/7)+[0, 2, 3, 5, 7, 9, 10][((n-1) mod 7)+1]: seq(A083033(n), n=1..100); # Wesley Ivan Hurt, Jul 20 2016
Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 7, 9, 10}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 2, 3, 5, 7, 9, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *) Quotient[3 (4#-3), 7] & /@ Range[96] (* Federico Provvedi, Nov 06 2023 *)
a(n)=[-2, 0, 2, 3, 5, 7, 9][n%7+1] + n\7*12 \\ Charles R Greathouse IV, Jul 20 2016
my(x='x+O('x^99)); concat(0, Vec(x^2*(x^2+1)*(2*x^4+x^3+x+2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
[n : n in [0..150] | n mod 12 in [0, 2, 4, 6, 7, 9, 11]]; // Wesley Ivan Hurt, Jul 20 2016
A083089:=n->12*floor(n/7)+[0, 2, 4, 6, 7, 9, 11][(n mod 7)+1]: seq(A083089(n), n=0..100); # Wesley Ivan Hurt, Jul 20 2016
Select[Range[0,200],MemberQ[{0,2,4,6,7,9,11},Mod[#,12]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,2,4,6,7,9,11,12},90] (* Harvey P. Dale, Mar 29 2016 *)
a(n) = 2*(n-1)-2*(n-1)\7; \\ Altug Alkan, Sep 21 2018
x='x+O('x^99); concat(0, Vec(x^2*(x^4+x^3+2)*(1+x+x^2)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
[n : n in [0..300] | n mod 12 in [0, 4, 7]]; // Wesley Ivan Hurt, Jun 14 2016
A083030:=n->4*n-(13+2*cos(2*n*Pi/3))/3: seq(A083030(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
Select[Range[0,250], MemberQ[{0,4,7}, Mod[#,12]]&] (* Harvey P. Dale, Apr 17 2014 *) LinearRecurrence[{1, 0, 1, -1}, {0, 4, 7, 12}, 100] (* Jianing Song, Sep 22 2018 *)
my(x='x+O('x^99)); concat(0, Vec(x^2*(4+3*x+5*x^2)/((1+x+x^2)*(1-x)^2))) \\ Jianing Song, Sep 22 2018
[n : n in [0..300] | n mod 12 in [0, 3, 7]]; // Wesley Ivan Hurt, Jun 14 2016
A083031:=n->(12*n-14-cos(2*n*Pi/3)+sqrt(3)*sin(2*n*Pi/3))/3: seq(A083031(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
Select[Range[0, 400], MemberQ[{0, 3, 7}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jun 14 2016 *) LinearRecurrence[{1, 0, 1, -1}, {0, 3, 7, 12}, 100] (* Jianing Song, Sep 22 2018 *)
x='x+O('x^99); concat(0, Vec(x^2*(3+4*x+5*x^2)/((1+x+x^2)*(1-x)^2))) \\ Jianing Song, Sep 22 2018
[n : n in [0..150] | n mod 12 in [0, 1, 3, 5, 7, 8, 10]]; // Wesley Ivan Hurt, Jul 20 2016
A083034:= n-> 12*floor((n-1)/7)+[0, 1, 3, 5, 7, 8, 10][((n-1) mod 7)+1]: seq(A083034(n), n=1..100); # Wesley Ivan Hurt, Jul 20 2016
Select[Range[0, 150], MemberQ[{0, 1, 3, 5, 7, 8, 10}, Mod[#, 12]] &] (* Wesley Ivan Hurt, Jul 20 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 5, 7, 8, 10, 12}, 70] (* Jianing Song, Sep 22 2018 *) Quotient[12 # - 11, 7] & /@ Range[96] (* Federico Provvedi, Nov 06 2023 *)
my(x='x+O('x^99)); concat(0, Vec(x^2*(x+1)*(2*x^5+x^3+x^2+x+1)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ Jianing Song, Sep 22 2018
Comments