A052964
Expansion of (1-x)/((1-2x)(1+x-x^2)).
Original entry on oeis.org
1, 0, 3, 1, 10, 7, 35, 36, 127, 165, 474, 715, 1807, 3004, 6995, 12393, 27370, 50559, 107883, 204820, 427351, 826045, 1698458, 3321891, 6765175, 13333932, 26985675, 53457121, 107746282, 214146295, 430470899, 857417220, 1720537327
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Sequence(Prod(Union(Prod(Sequence(Z),Z),Z,Z),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
CoefficientList[Series[(1-x)/((1-2x)(1+x-x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{1,3,-2},{1,0,3},40] (* Harvey P. Dale, Jun 03 2019 *)
A226205
a(n) = F(n)^2 - F(n-1)^2 or F(n+1) * F(n-2) where F(n) = A000045(n), the Fibonacci numbers.
Original entry on oeis.org
1, 0, 3, 5, 16, 39, 105, 272, 715, 1869, 4896, 12815, 33553, 87840, 229971, 602069, 1576240, 4126647, 10803705, 28284464, 74049691, 193864605, 507544128, 1328767775, 3478759201, 9107509824, 23843770275, 62423800997, 163427632720, 427859097159, 1120149658761
Offset: 1
G.f. = x + 3*x^3 + 5*x^4 + 16*x^5 + 39*x^6 + 105*x^7 + 272*x^8 + 715*x^9 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- John P. Bonomo and Montana Ferita, A Small Fib, College Math. J., 2023.
- Nurettin Irmak, Product of arbitrary Fibonacci numbers with distance 1 to Fibonomial coefficient, Turk J Math, (2017) 41: 825-828. See p. 828.
- C.-A. Laisant, Observations sur les triangles rectangles en nombres entiers et les suites de Fibonacci, Nouvelles Annales de Math. (1919, in French) Série 4, Vol. 19, 391-397.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Cf.
A001519,
A001622,
A001654,
A007598,
A033999,
A039717,
A052156,
A079472,
A084179,
A088305,
A112091,
A121646,
A290565.
Cf. similar sequences of the type k*F(n)*F(n+1)+(-1)^n listed in
A264080.
-
[Fibonacci(n)^2-Fibonacci(n-1)^2: n in [1..40]]; // Vincenzo Librandi, Jun 18 2014
-
a:= n-> (<<0|1|0>, <0|0|1>, <-1|2|2>>^n. <<1,0,3>>)[1, 1]:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 28 2016
-
a[ n_] := Fibonacci[n + 1] Fibonacci[n - 2]; (* Michael Somos, Jun 17 2014 *)
CoefficientList[Series[(1 - x)^2/((1 + x) (1 - 3 x + x^2)), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2014 *)
-
{a(n) = fibonacci( n + 1) * fibonacci( n - 2)};
-
a(n) = round(2^(-1-n)*(-(-1)^n*2^(3+n)-(3-sqrt(5))^n*(1+sqrt(5))+(-1+sqrt(5))*(3+sqrt(5))^n)/5) \\ Colin Barker, Sep 28 2016
-
lista(nn) = {my(p = (3*x-1)/(x^3-2*x^2-2*x+1)); for (n=1, nn, p = deriv(p, x); print1(subst(p, x, 0)/n!, ", "); ); } \\ Michel Marcus, May 22 2018
A084178
Inverse binomial transform of Fibonacci oblongs.
Original entry on oeis.org
0, 1, 0, 3, -1, 10, -7, 35, -36, 127, -165, 474, -715, 1807, -3004, 6995, -12393, 27370, -50559, 107883, -204820, 427351, -826045, 1698458, -3321891, 6765175, -13333932, 26985675, -53457121, 107746282, -214146295, 430470899, -857417220, 1720537327, -3431847189
Offset: 0
-
LinearRecurrence[{-1,3,2},{0,1,0},40] (* Harvey P. Dale, Nov 24 2020 *)
A237498
Riordan array (1/(1-x-x^2), x/(1+2*x)).
Original entry on oeis.org
1, 1, 1, 2, -1, 1, 3, 4, -3, 1, 5, -5, 10, -5, 1, 8, 15, -25, 20, -7, 1, 13, -22, 65, -65, 34, -9, 1, 21, 57, -152, 195, -133, 52, -11, 1, 34, -93, 361, -542, 461, -237, 74, -13, 1, 55, 220, -815, 1445, -1464, 935, -385, 100, -15, 1, 89, -385, 1850, -3705
Offset: 0
Triangle begins:
1;
1, 1;
2, -1, 1;
3, 4, -3, 1;
5, -5, 10, -5, 1;
8, 15, -25, 20, -7, 1;
13, -22, 65, -65, 34, -9, 1;
...
Production matrix is:
1, 1;
1, -2, 1;
2, 0, -2, 1;
4, 0, 0, -2, 1;
8, 0, 0, 0, -2, 1;
16, 0, 0, 0, 0, -2, 1;
32, 0, 0, 0, 0, 0, -2, 1;
64, 0, 0, 0, 0, 0, 0, -2, 1;
...
-
nmax=10;Flatten[CoefficientList[Series[CoefficientList[Series[(1 + 2*x) / ((1 + 2*x - y*x) * (1 - x - x^2)), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 15 2017 *)
Showing 1-4 of 4 results.
Comments
. - Sean A. Irvine, Nov 04 2024