A322240
a(n) = A084605(n)^2, the square of the central coefficient in (1 + x + 4*x^2)^n.
Original entry on oeis.org
1, 1, 81, 625, 21025, 314721, 8071281, 155975121, 3685097025, 79065004225, 1832690505361, 41201108978481, 955863424195681, 22002282841672225, 513656632397480625, 11987246142597870225, 281793325930991748225, 6636532731958908324225, 156986802654088221500625, 3721955785026092495600625, 88512056987508595608293025
Offset: 0
G.f.: A(x) = 1 + x + 81*x^2 + 625*x^3 + 21025*x^4 + 314721*x^5 + 8071281*x^6 + 155975121*x^7 + 3685097025*x^8 + 79065004225*x^9 + ... + A084605(n)^2*x^n + ...
that is,
A(x) = 1 + x + 9^2*x^2 + 25^2*x^3 + 145^2*x^4 + 561^2*x^5 + 2841^2*x^6 + 12489^2*x^7 + 60705^2*x^8 + 281185^2*x^9 + ... + A084605(n)^2*x^n + ...
-
a[n_] := Sum[(-3)^(n-k) * 2^k * Binomial[n,k] * Binomial[2k,k], {k, 0, n}]^2; Array[a, 20, 0] (* Amiram Eldar, Dec 13 2018 *)
-
/* a(n) = A084605(n)^2 */
{a(n)=polcoeff(1/sqrt(1 - 2*x - 15*x^2 +x*O(x^n)), n)^2}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / 1 / agm(1 + 3*5*x, sqrt((1 - 3^2*x)*(1 - 5^2*x) +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* Square of binomial sum */
{a(n) = sum(k=0,n, (-3)^(n-k)*2^k*binomial(n,k)*binomial(2*k,k))^2}
for(n=0, 20, print1(a(n), ", "))
A322241
G.f.: exp( Sum_{n>=1} A084605(n)^2 * x^n/n ), where A084605(n) is the central coefficient in (1 + x + 4*x^2)^n.
Original entry on oeis.org
1, 1, 41, 249, 6305, 77569, 1665321, 27724889, 574252417, 10958980929, 228679916905, 4671350051321, 99292476904609, 2107949882690241, 45658568907254505, 993562984208479193, 21876513296218002433, 484448162130512673665, 10812975015547281792937, 242647271141110287979513, 5477046865641884201456033
Offset: 0
G.f.: A(x) = 1 + x + 41*x^2 + 249*x^3 + 6305*x^4 + 77569*x^5 + 1665321*x^6 + 27724889*x^7 + 574252417*x^8 + 10958980929*x^9 + 228679916905*x^10 + ...
such that
log(A(x)) = x + 81*x^2/2 + 625*x^3/3 + 21025*x^4/4 + 314721*x^5/5 + 8071281*x^6/6 + 155975121*x^7/7 + 3685097025*x^8/8 + ... + A084605(n)^2 * x^n/n + ...
RELATED SERIES.
The g.f. of A084605 equals the series
1/sqrt(1 - 2*x - 15*x^2) = 1 + x + 9*x^2 + 25*x^3 + 145*x^4 + 561*x^5 + 2841*x^6 + 12489*x^7 + 60705*x^8 + 281185*x^9 + ... + A084605(n) * x^n/n + ...
-
{a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, polcoeff(1/sqrt(1 - 2*x - 15*x^2 +x*O(x^m)), m)^2 *x^m/m)+x*O(x^n)), n))}
for(n=0,30,print1(a(n),", "))
A091147
Expansion of (1-x-sqrt(1-2*x-15*x^2))/(8*x^2).
Original entry on oeis.org
1, 1, 5, 13, 57, 201, 861, 3445, 14897, 63313, 278389, 1223069, 5465065, 24513945, 111037005, 505298565, 2314343265, 10645982625, 49202944485, 228253816365, 1062783893145, 4964167491945, 23256852644925, 109249893866133, 514494575459217, 2428488338526961
Offset: 0
-
a := n -> simplify(2^n*GegenbauerC(n, -n-1, -1/4)/(n+1)):
seq(a(n), n=0..25); # Peter Luschny, May 08 2016
-
a[0] = 1; a[1] = 1; a[n_] := ((2*n + 1)*a[n - 1] - 15*(1 - n)*a[n - 2])/(n + 2); Table[a[n], {n, 0, 50}] (* T. D. Noe, Oct 02 2012 *)
CoefficientList[Series[(1 - x - Sqrt[1 - 2 x - 15 x^2]) / (8 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, May 10 2013 *)
a[n_] := Hypergeometric2F1[1/2 - n/2, -n/2, 2, 16];
Table[a[n], {n, 0, 25}] (* Peter Luschny, Mar 18 2018 *)
-
a(n):=2^n*coeff(expand((1+x/2+x^2)^(n+1)),x^n)/(n+1);
makelist(a(n),n,0,30); /* Emanuele Munarini, Apr 27 2012 */
-
my(x='x+O('x^66)); Vec((1-x-sqrt(1-2*x-15*x^2))/(8*x^2)) \\ Joerg Arndt, May 11 2013
A098264
G.f.: 1/(1-2x-19x^2)^(1/2).
Original entry on oeis.org
1, 1, 11, 31, 211, 851, 4901, 22961, 124531, 623011, 3313201, 17086301, 90453661, 473616781, 2509264811, 13250049551, 70368250451, 373539254611, 1989045489281, 10597110956861, 56566637447401, 302196871378601, 1616570627763311, 8654955238504531, 46384344189261661
Offset: 0
-
Table[SeriesCoefficient[1/Sqrt[1-2*x-19*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
-
x='x+O('x^66); Vec(1/(1-2*x-19*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013
A307855
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, 13, ...
1, 7, 13, 19, 25, 31, 37, ...
1, 19, 49, 91, 145, 211, 289, ...
1, 51, 161, 331, 561, 851, 1201, ...
1, 141, 581, 1441, 2841, 4901, 7741, ...
1, 393, 2045, 5797, 12489, 22961, 38053, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A084606
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1+2x+2x^2)^n.
Original entry on oeis.org
1, 1, 2, 2, 1, 4, 8, 8, 4, 1, 6, 18, 32, 36, 24, 8, 1, 8, 32, 80, 136, 160, 128, 64, 16, 1, 10, 50, 160, 360, 592, 720, 640, 400, 160, 32, 1, 12, 72, 280, 780, 1632, 2624, 3264, 3120, 2240, 1152, 384, 64, 1, 14, 98, 448, 1484, 3752, 7448, 11776, 14896, 15008, 11872
Offset: 0
Rows:
{1},
{1,2,2},
{1,4,8,8,4},
{1,6,18,32,36,24,8},
{1,8,32,80,136,160,128,64,16},
{1,10,50,160,360,592,720,640,400,160,32},
{1,12,72,280,780,1632,2624,3264,3120,2240,1152,384,64},
-
for(n=0,15, for(k=0,2*n,t=polcoeff((1+2*x+2*x^2)^n,k,x); print1(t",")); print(" "))
A307847
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k^2)*x^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 7, 1, 1, 1, 19, 25, 19, 1, 1, 1, 33, 55, 145, 51, 1, 1, 1, 51, 97, 595, 561, 141, 1, 1, 1, 73, 151, 1729, 2611, 2841, 393, 1, 1, 1, 99, 217, 4051, 8001, 22141, 12489, 1107, 1, 1, 1, 129, 295, 8209, 19251, 105441, 119449, 60705, 3139, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 3, 9, 19, 33, 51, ...
1, 7, 25, 55, 97, 151, ...
1, 19, 145, 595, 1729, 4051, ...
1, 51, 561, 2611, 8001, 19251, ...
1, 141, 2841, 22141, 105441, 369501, ...
1, 393, 12489, 119449, 627873, 2319801, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, k^(2*j)] * Binomial[n, 2*j] * Binomial[2*j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A110180
Triangle of generalized central trinomial coefficients.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 5, 1, 1, 1, 19, 13, 7, 1, 1, 1, 51, 49, 19, 9, 1, 1, 1, 141, 161, 91, 25, 11, 1, 1, 1, 393, 581, 331, 145, 31, 13, 1, 1, 1, 1107, 2045, 1441, 561, 211, 37, 15, 1, 1, 1, 3139, 7393, 5797, 2841, 851, 289, 43, 17, 1, 1
Offset: 0
Rows begin
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 7, 5, 1, 1;
1, 19, 13, 7, 1, 1;
-
T[n_, 0] := 1; T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n - k - j, j]*k^j, {j, 0, Floor[(n - k)/2]}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Mar 05 2017 *)
A322248
G.f.: 1/sqrt( (1 + 3*x)*(1 - 13*x) ).
Original entry on oeis.org
1, 5, 57, 605, 6961, 81525, 973545, 11765325, 143522145, 1763351525, 21789466777, 270509191485, 3371353189009, 42155188480085, 528587607974217, 6644129071092525, 83691484792766145, 1056178325362832325, 13351036742005533945, 169019946403985898525, 2142600388730167543281, 27193744661180635582005, 345520219114720175821737, 4394534009569783690837005, 55943630366450131877449761, 712778930909503993783945125
Offset: 0
G.f.: A(x) = 1 + 5*x + 57*x^2 + 605*x^3 + 6961*x^4 + 81525*x^5 + 973545*x^6 + 11765325*x^7 + 143522145*x^8 + 1763351525*x^9 + 21789466777*x^10 + ...
such that A(x)^2 = 1/(1 - 10*x - 39*x^2).
RELATED SERIES.
exp( Sum_{n>=1} a(n)*x^n/n ) = 1 + 5*x + 41*x^2 + 365*x^3 + 3537*x^4 + 35925*x^5 + 378105*x^6 + 4084925*x^7 + 45044129*x^8 + 504880805*x^9 + 5735247817*x^10 + ...
-
CoefficientList[Series[1/Sqrt[((1+3x)(1-13x))],{x,0,30}],x] (* Harvey P. Dale, Jun 29 2021 *)
-
/* Using generating function: */
{a(n) = polcoeff( 1/sqrt((1 + 3*x)*(1 - 13*x) +x*O(x^n)),n)}
for(n=0,30,print1(a(n),", "))
-
/* Using binomial formula: */
{a(n) = sum(k=0,n, (-3)^(n-k)*4^k*binomial(n,k)*binomial(2*k,k))}
for(n=0,30,print1(a(n),", "))
-
/* Using binomial formula: */
{a(n) = sum(k=0,n, 13^(n-k)*(-4)^k*binomial(n,k)*binomial(2*k,k))}
for(n=0,30,print1(a(n),", "))
-
/* a(n) as a central coefficient */
{a(n) = polcoeff( (1 + 5*x + 16*x^2 +x*O(x^n))^n, n)}
for(n=0,30,print1(a(n),", "))
A084604
Triangle, read by rows, where the n-th row lists the (2n+1) coefficients of (1 + x + 4x^2)^n.
Original entry on oeis.org
1, 1, 1, 4, 1, 2, 9, 8, 16, 1, 3, 15, 25, 60, 48, 64, 1, 4, 22, 52, 145, 208, 352, 256, 256, 1, 5, 30, 90, 285, 561, 1140, 1440, 1920, 1280, 1024, 1, 6, 39, 140, 495, 1206, 2841, 4824, 7920, 8960, 9984, 6144, 4096, 1, 7, 49, 203, 791, 2261, 6027, 12489, 24108, 36176
Offset: 0
Rows:
{1},
{1,1, 4},
{1,2, 9, 8, 16},
{1,3,15, 25, 60, 48, 64},
{1,4,22, 52,145, 208, 352, 256, 256},
{1,5,30, 90,285, 561,1140,1440,1920,1280,1024},
{1,6,39,140,495,1206,2841,4824,7920,8960,9984,6144,4096},
-
With[{eq=(1+x+4x^2)},Flatten[Table[CoefficientList[Expand[eq^n],x],{n,0,10}]]] (* Harvey P. Dale, May 19 2011 *)
-
for(n=0,10, for(k=0,2*n,t=polcoeff((1+x+4*x^2)^n,k,x); print1(t",")); print(" "))
Showing 1-10 of 14 results.
Comments