cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A174974 Numbers of decimal digits of the Golomb-Dickman constant A084945 that are prime.

Original entry on oeis.org

6, 27, 57, 60, 1659, 2508
Offset: 1

Views

Author

Eric W. Weisstein, Apr 02 2010

Keywords

Examples

			a(1) = 6 since 624329 is prime
a(2) = 27 since 624329988543550870992936383 is prime
		

Crossrefs

Extensions

a(5) from David J. Broadhurst, Apr 02 2010
a(6) from Eric W. Weisstein, Apr 03 2010

A174975 Primes in the decimal digits of the Golomb-Dickman constant A084945.

Original entry on oeis.org

624329, 624329988543550870992936383, 624329988543550870992936383100837244179642620180529286973, 624329988543550870992936383100837244179642620180529286973551
Offset: 1

Views

Author

Eric W. Weisstein, Apr 02 2010

Keywords

Comments

Next term has 1659 decimal digits.

Crossrefs

A002034 Kempner numbers: smallest positive integer m such that n divides m!.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 6, 5, 11, 4, 13, 7, 5, 6, 17, 6, 19, 5, 7, 11, 23, 4, 10, 13, 9, 7, 29, 5, 31, 8, 11, 17, 7, 6, 37, 19, 13, 5, 41, 7, 43, 11, 6, 23, 47, 6, 14, 10, 17, 13, 53, 9, 11, 7, 19, 29, 59, 5, 61, 31, 7, 8, 13, 11, 67, 17, 23, 7, 71, 6, 73, 37, 10, 19, 11, 13, 79, 6, 9, 41, 83, 7
Offset: 1

Views

Author

Keywords

Comments

Sometimes named after Florentin Smarandache, although studied 60 years earlier by Aubrey Kempner and 35 years before that by Lucas.
Kempner originally defined a(1) to be 0, and there are good reasons to prefer that (see Hungerbühler and Specker), but we shall stay with the by-now traditional value a(1) = 1. - N. J. A. Sloane, Jan 02 2021
Kempner gave an algorithm to compute a(n) from the prime factorization of n. Partial solutions were given earlier by Lucas in 1883 and Neuberg in 1887. - Jonathan Sondow, Dec 23 2004
a(n) is the degree of lowest degree monic polynomial over Z that vanishes identically on the integers mod n [Newman].
Smallest k such that n divides product of k consecutive integers starting with n + 1. - Amarnath Murthy, Oct 26 2002
If m and n are any integers with n > 1, then |e - m/n| > 1/(a(n) + 1)! (see Sondow 2006).
Degree of minimal linear recurrence satisfied by Bell numbers (A000110) read modulo n. [Lunnon et al.] - N. J. A. Sloane, Feb 07 2009

Examples

			1! = 1, but clearly 8 does not divide 1.
2! = 2, but 8 does not divide 2.
3! = 6, but 8 does not divide 6.
4! = 24, and 8 does divide 24. Hence a(8) = 4.
However, 9 does not divide 24.
5! = 120, but 9 does not divide 120.
6! = 720, and 9 does divide 720. Hence a(9) = 6.
		

References

  • E. Lucas, Question Nr. 288, Mathesis 3 (1883), 232.
  • R. Muller, Unsolved problems related to Smarandache Function, Number Theory Publishing Company, Phoenix, AZ, ISBN 1-879585-37-5, 1993.
  • J. Neuberg, Solutions des questions proposées, Question Nr. 288, Mathesis 7 (1887), 68-69.
  • Donald J. Newman, A Problem Seminar. Problem 17, Springer-Verlag, 1982.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Florentin Smarandache, A Function in the Number Theory, Analele Univ. Timisoara, Fascicle 1, Vol. XVIII, 1980, pp. 79-88; Smarandache Function J., Vol. 1, No. 1-3 (1990), pp. 3-17.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Exercise 2.5.18 on page 77.

Crossrefs

Cf. A000142, A001113, A006530, A007672, A046022, A057109, A064759, A084945, A094371, A094372, A094404, A122378, A122379, A122416, A122417, A248937 (Fermi-Dirac analog: use unique representation of n > 1 as a product of distinct terms of A050376).
See A339594-A339596 for higher-dimensional generalizations.

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a002034 1 = 1
    a002034 n = fromJust (a092495 n `elemIndex` a000142_list)
    -- Reinhard Zumkeller, Aug 24 2011
    
  • Maple
    a:=proc(n) local b: b:=proc(m) if type(m!/n, integer) then m else fi end: [seq(b(m),m=1..100)][1]: end: seq(a(n),n=1..84); # Emeric Deutsch, Aug 01 2005
    g:= proc(p,u)
      local i,t;
      t:= 0;
      for i from 1 while t < u do
        t:= t + 1 + padic[ordp](i,p);
      od;
      p*(i-1)
    end;
    A002034:= x -> max(map(g@op, ifactors(x)[2])); # Robert Israel, Apr 20 2014
  • Mathematica
    Do[m = 1; While[ !IntegerQ[m!/n], m++ ]; Print[m], {n, 85}] (* or for larger n's *)
    Kempner[1] := 1; Kempner[n_] := Max[Kempner @@@ FactorInteger[n]]; Kempner[p_, 1] := p; Kempner[p_, alpha_] := Kempner[p, alpha] = Module[{a, k, r, i, nu, k0 = alpha(p - 1)}, i = nu = Floor[Log[p, 1 + k0]]; a[1] = 1; a[n_] := (p^n - 1)/(p - 1); k[nu] = Quotient[alpha, a[nu]]; r[nu] = alpha - k[nu]a[nu]; While[r[i] > 0, k[i - 1] = Quotient[r[i], a[i - 1]]; r[i - 1] = r[i] - k[i - 1]a[i - 1]; i-- ]; k0 + Plus @@ k /@ Range[i, nu]]; Table[ Kempner[n], {n, 85}] (* Eric W. Weisstein, based on a formula of Kempner's, May 17 2004 *)
    With[{facts = Range[100]!}, Flatten[Table[Position[facts, ?(Divisible[#, n] &), {1}, 1], {n, 90}]]] (* _Harvey P. Dale, May 24 2013 *)
  • PARI
    a(n)=if(n<0,0,s=1; while(s!%n>0,s++); s)
    
  • PARI
    a(n)=my(s=factor(n)[,1],k=s[#s],f=Mod(k!,n));while(f, f*=k++); k \\ Charles R Greathouse IV, Feb 28 2012
    
  • PARI
    valp(n,p)=my(s);while(n\=p,s+=n);s
    K(p,e)=if(e<=p,return(e*p));my(t=e*(p-1)\p*p);while(valp(t+=p,p)Charles R Greathouse IV, Jul 30 2013
    
  • Python
    from sympy import factorial
    def a(n):
        m=1
        while True:
            if factorial(m)%n==0: return m
            else: m+=1
    [a(n) for n in range(1, 101)] # Indranil Ghosh, Apr 24 2017
    
  • Python
    from sympy import factorint
    def valp(n, p):
        s = 0
        while n: n //= p; s += n
        return s
    def K(p, e):
        if e <= p: return e*p
        t = e*(p-1)//p*p
        while valp(t, p) < e: t += p
        return t
    def A002034(n):
        return 1 if n == 1 else max(K(p, e) for p, e in factorint(n).items())
    print([A002034(n) for n in range(1, 85)]) # Michael S. Branicky, Jun 09 2022 after Charles R Greathouse IV

Formula

A000142(a(n)) = A092495(n). - Reinhard Zumkeller, Aug 24 2011
From Joerg Arndt, Jul 14 2012: (Start)
The following identities were given by Kempner (1918):
a(1) = 1.
a(n!) = n.
a(p) = p for p prime.
a(p1 * p2 * ... * pu) = pu if p1 < p2 < ... < pu are distinct primes.
a(p^k) = p * k for p prime and k <= p.
Let n = p1^e1 * p2^e2 * ... * pu^eu be the canonical factorization of n, then a(n) = max( a(p1^e1), a(p2^e2), ..., a(pu^eu) ).
(End)
Clearly a(n) >= P(n), the largest prime factor of n (= A006530). a(n) = P(n) for almost all n (Erdős and Kastanas 1994, Ivic 2004). The exceptions are A057109. a(n) = P(n) if and only if a(n) is prime because if a(n) > P(n) and a(n) were prime, then since n divides a(n)!, n would also divide (a(n)-1)!, contradicting minimality of a(n). - Jonathan Sondow, Jan 10 2005
If p is prime then a(p^k) = k*p for 0 <= k <= p. Hence it appears also that if n = 2^m * p(1)^e(1) * ... * p(r)^e(r) and if there exists b, 1 <= b <= r, such that Max(2 * m + 2, p(i) * e(i), 1 <= i <= r) = p(b) * e(b) with e(b) <= p(b) then a(n) = e(b) * p(b). E.g.: a(2145986896455317997802121296896) = a(2^10 * 3^3 * 7^9 * 11^9 * 13^8) = 13 * 8 = 104, since 8 * 13 = Max (2 * 10 + 2, 3 * 3, 7 * 9, 11 * 9, 13 * 8) and 8 <= 13. - Benoit Cloitre, Sep 01 2002
It appears that a(2^m - 1) is the largest prime factor of 2^m - 1 (A005420).
a(n!) = n for all n > 0 and a(p) = p if p is prime. - Jonathan Sondow, Dec 23 2004
Conjecture: a(n) = 1 + n - Sum_{k=1..n} Sum_{m=1..n} cos(-2*Pi*k/n*m!)/n. Formula verified for the first 500 terms. - Mats Granvik, Feb 26 2021
Limit_{n->oo} (1/n) * Sum_{k=2..n} log(a(k))/log(k) = A084945 (Finch, 1999). - Amiram Eldar, Jul 04 2021

Extensions

Error in 45th term corrected by David W. Wilson, May 15 1997

A104350 Partial products of largest prime factors of numbers <= n.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1260, 2520, 7560, 37800, 415800, 1247400, 16216200, 113513400, 567567000, 1135134000, 19297278000, 57891834000, 1099944846000, 5499724230000, 38498069610000, 423478765710000, 9740011611330000
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 06 2005

Keywords

Comments

Partial Products of A006530: a(n) = Product_{k=1..n} A006530(k).
a(n) = a(n-1)*A006530(n) for n>1, a(1) = 1;
A020639(a(n)) = A040000(n-1), A006530(a(n)) = A007917(n) for n>1.
A001221(a(n)) = A000720(n), A001222(a(n)) = A001477(n-1).
A007947(a(n)) = A034386(n).
a(n) = A000142(n) / A076928(n). [Corrected by Franklin T. Adams-Watters, Oct 30 2006]
In decimal representation: A104351(n) = number of digits of a(n), A104355(n) = number of trailing zeros of a(n).
A104357(n) = a(n) - 1, A104365(n) = a(n) + 1.

References

  • Gérald Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publ. Inst. Elie Cartan, Vol. 13, Nancy, 1990.

Crossrefs

Programs

  • Haskell
    a104350 n = a104350_list !! (n-1)
    a104350_list = scanl1 (*) a006530_list
    -- Reinhard Zumkeller, Apr 10 2014
    
  • Mathematica
    A104350[n_] := Product[FactorInteger[k][[-1, 1]], {k, 1, n}]; Table[A104350[n], {n, 30}] (* G. C. Greubel, May 09 2017 *)
    FoldList[Times,Table[FactorInteger[n][[-1,1]],{n,30}]] (* Harvey P. Dale, May 25 2023 *)
  • PARI
    gpf(n)=my(f=factor(n)[,1]); f[#f]
    a(n)=prod(i=2,n,gpf(i)) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    first(n)=my(v=vector(n,i,1)); forfactored(k=2,n, v[k[1]]=v[k[1]-1]*vecmax(k[2][,1])); v \\ Charles R Greathouse IV, May 10 2017

Formula

log(a(n)) = c * n * log(n) + c * (1-gamma) * n + O(n * exp(-log(n)^(3/8-eps))), where c is the Golomb-Dickman constant (A084945) and gamma is Euler's constant (A001620) (Tenenbaum, 1990). - Amiram Eldar, May 21 2021

Extensions

More terms from David Wasserman, Apr 24 2008

A271948 Decimal expansion of a constant related to the variance of the number of vertices of the largest tree associated with a random mapping on n symbols.

Original entry on oeis.org

0, 4, 9, 4, 6, 9, 8, 5, 2, 2, 7, 9, 2, 2, 8, 0, 7, 5, 3, 3, 3, 4, 8, 5, 4, 6, 4, 0, 5, 6, 2, 5, 3, 8, 3, 6, 6, 0, 3, 7, 2, 5, 1, 0, 7, 6, 7, 0, 0, 2, 8, 0, 1, 3, 2, 9, 5, 3, 1, 5, 7, 8, 1, 0, 3, 9, 0, 3, 3, 3, 4, 9, 4, 3, 0, 4, 2, 4, 0, 2, 9, 8, 6, 9, 7, 0, 1, 2, 0, 1, 9, 5, 8, 5, 1, 3, 4
Offset: 0

Views

Author

Jean-François Alcover, Apr 20 2016

Keywords

Examples

			0.049469852279228075333485464056253836603725107670028013295315781039...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 289.

Crossrefs

Programs

  • Mathematica
    digits = 96; F[x_] := 1 - Exp[-x]/Sqrt[Pi*x] - Erf[Sqrt[x]]; Clear[f, g];
    f[m_] := f[m] = 2 NIntegrate[(1 - (1 - F[x])^-1), {x, 0, m}, WorkingPrecision -> digits + 10]; f[m = 100]; f[m = 2 m]; Print["m = ", m]; While[RealDigits[f[m], 10, digits + 5][[1]] != RealDigits[f[m/2], 10, digits + 5][[1]], m = 2 m; Print["m = ", m]];
    g[m_] := g[m] = (8/3) NIntegrate[(1 - (1 - F[x])^-1)*x, {x, 0, m}, WorkingPrecision -> digits + 10]; g[m = 100]; g[m = 2 m]; Print["m = ", m]; While[RealDigits[g[m], 10, digits + 5][[1]] != RealDigits[g[m/2], 10, digits + 5][[1]], m = 2 m; Print["m = ", m]];
    Join[{0}, RealDigits[g[m] - f[m]^2, 10, digits][[1]]]

A091723 Decimal expansion of the root x of Ei(x)=0, where Ei is the exponential integral.

Original entry on oeis.org

3, 7, 2, 5, 0, 7, 4, 1, 0, 7, 8, 1, 3, 6, 6, 6, 3, 4, 4, 6, 1, 9, 9, 1, 8, 6, 6, 5, 8, 0, 1, 1, 9, 1, 3, 3, 5, 3, 5, 6, 8, 9, 4, 9, 7, 7, 7, 1, 6, 5, 4, 0, 5, 1, 5, 5, 5, 6, 5, 7, 4, 3, 5, 2, 4, 2, 2, 0, 0, 1, 2, 0, 6, 3, 6, 2, 0, 1, 8, 5, 4, 3, 8, 4, 9, 2, 6, 0, 4, 9, 9, 5, 1, 5, 4, 8, 9, 4, 2, 3, 9, 2
Offset: 0

Views

Author

Eric W. Weisstein, Feb 01 2004

Keywords

Examples

			0.372507410781366634461991866580119133535689497771654...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ x /. FindRoot[ ExpIntegralEi[x] == 0, {x, 1}, WorkingPrecision -> 102]][[1]] (* Jean-François Alcover, Oct 29 2012 *)
    RealDigits[x /. FindRoot[LogIntegral[Exp[x]]/x, {x, 1/3}, WorkingPrecision -> 105]][[1]] (* Artur Jasinski, Apr 19 2022 *)
  • PARI
    solve(x=.3,1,real(eint1(-x))) \\ Charles R Greathouse IV, Apr 14 2014

Formula

Equals log(A070769). - Amiram Eldar, Aug 14 2020
Equals root x of li(exp(x)/x)=0 where li(x) is the logarithmic integral. - Artur Jasinski, Apr 19 2022

A244067 Decimal expansion of the Purdom-Williams constant, a constant related to the Golomb-Dickman constant and to the asymptotic evaluation of the expectation of a random function longest cycle length.

Original entry on oeis.org

7, 8, 2, 4, 8, 1, 6, 0, 0, 9, 9, 1, 6, 5, 6, 6, 1, 5, 0, 1, 6, 2, 1, 5, 1, 8, 8, 0, 6, 2, 9, 1, 0, 2, 8, 6, 6, 4, 4, 3, 0, 2, 8, 2, 5, 6, 6, 9, 6, 2, 8, 5, 8, 2, 4, 4, 1, 3, 7, 9, 2, 0, 3, 1, 9, 1, 7, 8, 0, 7, 1, 0, 9, 3, 0, 4, 0, 7, 4, 7, 3, 9, 1, 6, 5, 6, 9, 8, 8, 5, 2, 7, 3, 1, 0, 0, 3, 2, 0
Offset: 0

Views

Author

Jean-François Alcover, Jun 19 2014

Keywords

Examples

			0.78248160099165661501621518806291...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 288.

Crossrefs

Programs

  • Mathematica
    lambda = Integrate[Exp[LogIntegral[x]], {x, 0, 1}]; N[lambda*Sqrt[Pi/2], 99] // RealDigits // First

Formula

Equals sqrt(Pi/2)*Integral_{x=0..1} exp(li(x)) dx, where li is the logarithmic integral function.
Equals A069998 * A084945. - Amiram Eldar, Aug 25 2020

A225336 Continued fraction of the Golomb-Dickman constant.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 22, 1, 2, 3, 1, 1, 11, 1, 1, 2, 22, 2, 6, 1, 1, 3, 1, 1, 28, 5, 2, 3, 13, 1, 4, 3, 1, 1, 1, 1, 1, 2, 1, 43, 1, 1, 1, 2, 3, 1, 38, 1, 2, 5, 48, 2, 66, 1, 1, 1, 1, 2, 1, 9, 6, 13, 1, 5, 2, 38, 18, 1, 9, 2, 2, 12, 491, 1, 1, 19, 1, 1, 1, 1, 2, 1, 19
Offset: 0

Views

Author

Eric W. Weisstein, Jul 25 2013

Keywords

Examples

			lambda = 0.6243299885...
        = [a_0; a_1, a_2, ...]
        = [0; 1, 1, 1, 1, 1, 22, ...]
        = 0 + 1/(1 + 1/(1 + 1/(1 + 1/(22 + 1/(1 + ...))))).
		

Crossrefs

Cf. A084945 (decimal expansion of the Golomb-Dickman constant).

A244258 Decimal expansion of sqrt(2*Pi)*log(2), a constant associated with asymptotic evaluation of random mapping statistics.

Original entry on oeis.org

1, 7, 3, 7, 4, 6, 2, 3, 2, 1, 2, 7, 2, 3, 1, 8, 2, 8, 3, 6, 6, 0, 3, 0, 9, 1, 6, 4, 7, 4, 4, 3, 6, 4, 9, 6, 1, 1, 3, 5, 6, 1, 2, 5, 4, 2, 1, 0, 8, 0, 1, 8, 4, 8, 0, 7, 5, 2, 7, 9, 7, 7, 0, 6, 8, 1, 9, 0, 3, 1, 4, 5, 2, 6, 1, 3, 9, 8, 2, 6, 2, 7, 8, 7, 8, 7, 2, 9, 1, 6, 9, 0, 9, 1, 6, 0, 7, 8, 9, 2
Offset: 1

Views

Author

Jean-François Alcover, Jun 24 2014

Keywords

Examples

			1.7374623212723182836603...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4.2 Random Mapping Statistics, p. 288.

Crossrefs

Programs

  • Magma
    R:= RealField(); Sqrt(2*Pi(R))*Log(2); // G. C. Greubel, Jul 27 2018
  • Mathematica
    RealDigits[Sqrt[2*Pi]*Log[2], 10, 100] // First
  • PARI
    sqrt(2*Pi)*log(2) \\ G. C. Greubel, Jul 27 2018
    

A247398 Decimal expansion of a constant 'v' such that the asymptotic variance of the distribution of the longest cycle given a random n-permutation evaluates as v*n^2.

Original entry on oeis.org

0, 3, 6, 9, 0, 7, 8, 3, 0, 0, 6, 4, 8, 5, 2, 2, 0, 2, 1, 7, 7, 1, 0, 7, 0, 0, 2, 9, 2, 9, 3, 2, 7, 6, 4, 0, 2, 2, 4, 6, 2, 2, 3, 3, 1, 0, 5, 8, 6, 8, 5, 1, 9, 6, 4, 7, 6, 2, 2, 7, 8, 2, 0, 7, 3, 0, 4, 8, 9, 1, 9, 4, 7, 1, 5, 3, 0, 8, 0, 6, 2, 8, 5, 1, 1, 8, 9, 3, 0, 4, 4, 9, 1, 0, 3, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Sep 16 2014

Keywords

Examples

			0.03690783006485220217710700292932764...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.4 Golomb-Dickman Constant, p. 285.

Crossrefs

Cf. A084945.

Programs

  • Maple
    evalf(int((x-exp(Ei(-x))*x),x=0..infinity) - int( (1-exp(Ei(-x))),x=0..infinity)^2, 50); # Vaclav Kotesovec, Aug 12 2019
  • Mathematica
    v = NIntegrate[x - E^ExpIntegralEi[-x]*x, {x, 0, Infinity}, WorkingPrecision -> 80] - NIntegrate[1 - E^ExpIntegralEi[-x], {x, 0, Infinity}, WorkingPrecision -> 80]^2; Join[{0}, RealDigits[v, 10, 40] // First]

Formula

v = integral_{0..infinity} x-e^Ei(-x)*x dx - (integral_{0..infinity} 1-e^Ei(-x) dx)^2, where Ei is the exponential integral function. [corrected by Vaclav Kotesovec, Aug 12 2019]

Extensions

More digits from Vaclav Kotesovec, Aug 12 2019
Showing 1-10 of 25 results. Next