cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A008586 Multiples of 4.

Original entry on oeis.org

0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 14 ).
A000466(n), a(n) and A053755(n) are Pythagorean triples. - Zak Seidov, Jan 16 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-3) is equal to the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Number of n-permutations (n>=1) of 5 objects u, v, z, x, y with repetition allowed, containing n-1 u's. Example: if n=1 then n-1 = zero (0) u, a(1)=4 because we have v, z, x, y. If n=2 then n-1 = one (1) u, a(2)=8 because we have vu, zu, xu, yu, uv, uz, ux, uy. A038231 formatted as a triangular array: diagonal: 4, 8, 12, 16, 20, 24, 28, 32, ... - Zerinvary Lajos, Aug 06 2008
For n > 0: numbers having more even than odd divisors: A048272(a(n)) < 0. - Reinhard Zumkeller, Jan 21 2012
A214546(a(n)) < 0 for n > 0. - Reinhard Zumkeller, Jul 20 2012
A090418(a(n)) = 0 for n > 0. - Reinhard Zumkeller, Aug 06 2012
Terms are the differences of consecutive centered square numbers (A001844). - Mihir Mathur, Apr 02 2013
a(n)*Pi = nonnegative zeros of the cycloid generated by a circle of radius 2 rolling along the positive x-axis from zero. - Wesley Ivan Hurt, Jul 01 2013
Apart from the initial term, number of vertices of minimal path on an n-dimensional cubic lattice (n>1) of side length 2, until a self-avoiding walk gets stuck. A004767 + 1. - Matthew Lehman, Dec 23 2013
The number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 2688. - Philippe A.J.G. Chevalier, Dec 29 2015
First differences of A001844. - Robert Price, May 13 2016
Numbers k such that Fibonacci(k) is a multiple of 3 (A033888). - Bruno Berselli, Oct 17 2017

Crossrefs

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008585, A005843, A001477, A000217.

Programs

Formula

a(n) = A008574(n), n>0. - R. J. Mathar, Oct 28 2008
a(n) = Sum_{k>=0} A030308(n,k)*2^(k+2). - Philippe Deléham, Oct 17 2011
a(n+1) = A000290(n+2) - A000290(n). - Philippe Deléham, Mar 31 2013
G.f.: 4*x/(1-x)^2. - David Wilding, Jun 21 2014
E.g.f.: 4*x*exp(x). - Stefano Spezia, May 18 2021

A090423 Primes that can be written in binary representation as concatenation of other primes.

Original entry on oeis.org

11, 23, 29, 31, 43, 47, 59, 61, 71, 79, 83, 109, 113, 127, 151, 157, 167, 173, 179, 181, 191, 223, 229, 233, 239, 241, 251, 271, 283, 317, 337, 347, 349, 353, 359, 367, 373, 379, 383, 431, 433, 439, 457, 463, 467, 479, 487, 491, 499, 503, 509, 541, 563, 599, 607
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2003

Keywords

Comments

A090418(a(n)) > 1; subsequence of A090421.

Examples

			337 is 101010001 in binary,
10 is 2,
10 is 2,
10001 is 17, partition is 10_10_10001, so 337 is in the sequence.
		

Crossrefs

Programs

  • Haskell
    a090423 n = a090423_list !! (n-1)
    a090423_list = filter ((> 1 ) . a090418 . fromInteger) a000040_list
    -- Reinhard Zumkeller, Aug 06 2012
    
  • PARI
    is_A090423(n)={isprime(n)&&for(i=2, #binary(n)-2, bittest(n, i-1)&&isprime(n%2^i)&&is_A090421(n>>i)&&return(1))} \\ M. F. Hasler, Apr 21 2015
  • Python
    # Primes = [2,...,607]
    from sympy import sieve
    primes = list(sieve.primerange(1, 608))
    def tryPartioning(binString):   # First digit is not 0
        l = len(binString)
        for t in range(2, l-1):
            substr1 = binString[:t]
            if (int('0b'+substr1,2) in primes) or (t>=4 and tryPartioning(substr1)):
                substr2 = binString[t:]
                if substr2[0]!='0':
                    if (int('0b'+substr2,2) in primes) or (l-t>=4 and tryPartioning(substr2)):
                        return 1
        return 0
    for p in primes:
        if tryPartioning(bin(p)[2:]):
            print(p, end=',')
    
  • Python
    from sympy import isprime, primerange
    def ok(p):
      b = bin(p)[2:]
      for i in range(2, len(b)-1):
        if isprime(int(b[:i], 2)) and b[i] != '0':
          if isprime(int(b[i:], 2)) or ok(int(b[i:], 2)): return True
      return False
    def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)]
    print(aupto(607)) # Michael S. Branicky, May 16 2021
    

Extensions

Corrected by Alex Ratushnyak, Aug 03 2012

A090421 Numbers that can be written in binary representation as concatenation of primes.

Original entry on oeis.org

2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 29, 30, 31, 37, 41, 42, 43, 45, 46, 47, 53, 54, 55, 58, 59, 61, 62, 63, 67, 70, 71, 73, 78, 79, 81, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 101, 103, 107, 109, 111, 113, 115, 117, 118, 119, 122, 123
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2003

Keywords

Comments

A090418(a(n)) > 0; complement of A090419.
Terms in the sequence cannot end in 00, 0010, 001010, etc., and thus a(n) > 3n/2 + O(log n). - Charles R Greathouse IV, Apr 21 2015

Crossrefs

Cf. A000040, A090420, and A090423 are subsequences.

Programs

Extensions

Based on corrections in A090418, data recomputed by Reinhard Zumkeller, Aug 06 2012

A090422 Primes that cannot be written in binary representation as concatenation of other primes.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 37, 41, 53, 67, 73, 89, 97, 101, 103, 107, 131, 137, 139, 149, 163, 193, 197, 199, 211, 227, 257, 263, 269, 277, 281, 293, 307, 311, 313, 331, 389, 397, 401, 409, 419, 421, 443, 449, 461, 521, 523, 547, 557, 569, 571, 577, 587, 593
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2003

Keywords

Comments

A090418(a(n)) = 1; subsequence of A090421.
This sequence is indeed infinite, as we need infinitely many terms to cover the primes with arbitrarily large runs of 0's in their base-2 representation. - Jeffrey Shallit, Mar 07 2021

Crossrefs

A342244 handles the case where the primes are allowed to have leading zeros.

Programs

  • Haskell
    a090422 n = a090422_list !! (n-1)
    a090422_list = filter ((== 1) . a090418 . fromInteger) a000040_list
    -- Reinhard Zumkeller, Aug 07 2012
    
  • Python
    from sympy import isprime, primerange
    def ok(p):
      b = bin(p)[2:]
      for i in range(2, len(b)-1):
        if isprime(int(b[:i], 2)) and b[i] != '0':
          if isprime(int(b[i:], 2)) or not ok(int(b[i:], 2)): return False
      return True
    def aupto(lim): return [p for p in primerange(2, lim+1) if ok(p)]
    print(aupto(593)) # Michael S. Branicky, Mar 07 2021

Extensions

Based on corrections in A090418, data recomputed by Reinhard Zumkeller, Aug 07 2012

A090419 Numbers that cannot be written in binary representation as concatenation of primes.

Original entry on oeis.org

1, 4, 6, 8, 9, 12, 16, 18, 20, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 40, 44, 48, 49, 50, 51, 52, 56, 57, 60, 64, 65, 66, 68, 69, 72, 74, 75, 76, 77, 80, 82, 84, 88, 92, 96, 98, 99, 100, 102, 104, 105, 106, 108, 110, 112, 114, 116, 120, 121, 124
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2003

Keywords

Comments

A090418(a(n)) = 0; complement of A090421.

Crossrefs

Programs

  • Haskell
    a090419 n = a090419_list !! (n-1)
    a090419_list = filter ((== 0) . a090418) [1..]
    -- Reinhard Zumkeller, Aug 06 2012

Extensions

Based on corrections in A090418, data recomputed by Reinhard Zumkeller, Aug 06 2012

A090420 Numbers having a unique representation as concatenation of primes in binary.

Original entry on oeis.org

2, 3, 5, 7, 10, 13, 14, 15, 17, 19, 21, 22, 30, 37, 41, 42, 53, 54, 55, 58, 62, 67, 70, 73, 78, 81, 85, 86, 89, 90, 97, 101, 103, 107, 111, 115, 117, 122, 131, 137, 139, 141, 143, 149, 150, 159, 163, 165, 166, 169, 170, 177, 193, 197, 199, 211, 214, 215, 218
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2003

Keywords

Comments

A090418(a(n)) = 1; subsequence of A090421.

Crossrefs

Cf. A090423 (subsequence).

Programs

  • Haskell
    a090420 n = a090420_list !! (n-1)
    a090420_list = filter ((== 1) . a090418) [1..]
    -- Reinhard Zumkeller, Aug 07 2012

Extensions

Based on corrections in A090418, data recomputed by Reinhard Zumkeller, Aug 07 2012

A257318 Numbers n whose binary expansion can be written as the concatenation of the binary expansion of prime numbers in at least two different ways (not allowing leading zeros).

Original entry on oeis.org

11, 23, 29, 31, 43, 45, 46, 47, 59, 61, 63, 71, 79, 83, 87, 91, 93, 94, 95, 109, 113, 118, 119, 123, 125, 126, 127, 151, 157, 167, 171, 173, 174, 175, 179, 181, 182, 183, 186, 187, 189, 190, 191, 219, 223, 229, 233, 235, 237, 238, 239, 241, 245, 246, 247, 251, 253, 254, 255, 271, 283, 286, 287
Offset: 1

Views

Author

Jeffrey Shallit, Apr 20 2015

Keywords

Comments

Numbers such that A090418(n)>1. A090423 is a subsequence. - M. F. Hasler, Apr 21 2015

Examples

			The first term is 11, as 11 in base 2 is 1011, which can be written either as (1011) or (10)(11).
		

Crossrefs

Cf. A090421.

Programs

A090424 Smallest number that can be written in binary representation as concatenation of other primes in exactly n ways.

Original entry on oeis.org

2, 11, 23, 47, 175, 95, 189, 375, 191, 381, 763, 1015, 751, 383, 765, 1023, 1407, 2045, 767, 8123, 1919, 5999, 1533, 5623, 4063, 3067, 3007, 3039, 1535, 6013, 6077, 8183, 7935, 11247, 3069, 12023, 12143, 6139, 6015, 6111, 6127, 3071, 6079, 6135, 7679, 32507
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2003

Keywords

Comments

A090418(a(n)) = n and A090418(m) <> n for m < a(n).

Examples

			n=6: a(6)=95 -> '1011111': '10"11111'==2"31, '10"11"111'==2"3"7, '10"111"11'==2"7"3, '101"11"11'==5"3"3, '1011"111'==11"7 and '10111"11'==23"3, therefore A090418(95)=6.
		

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a090424 = (+ 1) . fromJust . (`elemIndex` a090418_list)
    -- Reinhard Zumkeller, Aug 07 2012

Extensions

Based on corrections of A090418, data recomputed by Reinhard Zumkeller, Aug 07 2012

A256872 Numbers whose binary expansion is the concatenation of the binary expansion of two prime numbers in at least two ways.

Original entry on oeis.org

23, 31, 45, 47, 61, 93, 95, 119, 125, 127, 175, 187, 189, 191, 239, 247, 253, 255, 335, 357, 359, 363, 369, 379, 381, 383, 431, 439, 455, 477, 485, 491, 493, 495, 507, 509, 511, 573, 575, 631, 637, 639, 669, 671
Offset: 1

Views

Author

M. F. Hasler, Apr 21 2015

Keywords

Comments

A simplified variant (and subsequence) of A257318 (and A090421) where the concatenation of any number of primes is considered.
The subsequence of numbers which are concatenation of 2 primes in at least 3 ways is (93, 95, 189, 191, 239, 253, 335, 381, 383, 669, ...).
All terms are odd. Indeed, if an even number n > 2 is concatenation of two primes (in binary), then it is of the form 'n' = 'floor(n/4)''2' (where 'x' is x in binary), and there is no other possible decomposition.

Examples

			23 = 10111[2] = (10[2])(111[2]) = (101[2])(11[2]) which is (2)(7) resp. (5)(3).
		

Crossrefs

Programs

  • PARI
    is(n,c=2)={for(i=2,#binary(n)-2,bittest(n,i-1)&&isprime(n>>i)&&isprime(n%2^i)&&!c--&&return(1))}

Formula

A090418(a(n)) >= 2. (Necessary but not sufficient condition. This actually characterizes elements of A257318. For example, all terms of A090423 satisfy this but many of them are not terms of this sequence.)
Showing 1-9 of 9 results.