A128457
Numbers k such that 13^k - 2 is a prime.
Original entry on oeis.org
1, 2, 4, 5, 12, 78, 80, 90, 117, 120, 813, 1502, 2306, 2946, 6308, 13320, 26369, 31868, 44265, 81008
Offset: 1
Cf.
A084714 (smallest prime of the form (2n-1)^k - 2).
Cf.
A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1)).
-
Do[ f = 13^n - 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n,1,1000} ]
A128459
Numbers k such that 17^k - 2 is a prime.
Original entry on oeis.org
6, 24, 30, 106, 184, 232, 460, 1258, 3480, 5458, 32886
Offset: 1
Cf.
A084714 (smallest prime of the form (2n-1)^k - 2).
Cf.
A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1)).
-
Do[ f = 17^n - 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n,1,1000} ]
A128460
Numbers k such that 19^k - 2 is a prime.
Original entry on oeis.org
1, 2, 3, 13, 14, 19, 20, 23, 38, 1124, 7592, 11755, 12155, 12915, 14172, 15500, 20255, 28388, 184650
Offset: 1
Cf.
A084714 (smallest prime of the form (2n-1)^k - 2).
Cf.
A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1)).
-
[n: n in [0..1000] | IsPrime(19^n-2)]; // Vincenzo Librandi, Oct 23 2014
-
Do[ f = 19^n - 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n,1,1000} ]
A128455
Numbers k such that 9^k - 2 is a prime.
Original entry on oeis.org
1, 2, 3, 11, 45, 51, 260, 324, 390, 393, 1112, 3092, 4445, 10373, 15861, 18528, 97715, 112961
Offset: 1
Cf.
A084714 (smallest prime of the form (2n-1)^k - 2).
Cf.
A128472 (smallest prime of the form (2n-1)^k - 2 for k>(2n-1)).
-
Do[ f = 9^n - 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n,1,1000} ]
A128458
Numbers k such that 15^k - 2 is a prime.
Original entry on oeis.org
1, 2, 3, 7, 12, 17, 19, 51, 65, 550, 1460, 1641, 7035, 18002, 20963, 21163, 42563, 94906, 148048
Offset: 1
Cf.
A084714 (smallest prime of the form (2n-1)^k - 2).
Cf.
A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1)).
-
Do[ f = 15^n - 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n,1,1000} ]
Do[If[PrimeQ[15^n - 2], Print[n]], {n, 10^4}] (* Ryan Propper, Jun 06 2007 *)
A128472
a(n) is the smallest prime of the form (2n-1)^k - 2 for k > (2n-1), or 0 if no such number exists.
Original entry on oeis.org
0, 79, 6103515623, 5764799, 31381059607
Offset: 1
Cf.
A084714 (smallest prime of the form (2n-1)^k - 2).
Cf.
A133856 (least number k > (2n-1) such that (2n-1)^k - 2 is prime).
A096305
Numbers k such that 7^k + 4 is prime.
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 9, 14, 23, 129, 198, 235, 275, 630, 870, 1033, 1290, 3293, 3458, 11466, 13885, 25893, 32186, 33139, 58125, 78929, 97197, 121933, 128422, 442674
Offset: 1
Herman H. Rosenfeld (herm3(AT)pacbell.net), Jun 26 2004
7^14 + 4 = 678223072853 is a prime number.
-
Do[If[PrimeQ[7^n+4], Print[n]], {n, 1, 1000}]
-
for(n=0, 10^5, if(ispseudoprime(7^n+4), print1(n, ", "))) \\ Felix Fröhlich, Jun 04 2014
a(28)-a(29) from Lelio R. Paula, Nov 2014
A128461
Numbers k such that 21^k - 2 is a prime.
Original entry on oeis.org
1, 2, 4, 10, 21, 25, 27, 32, 60, 88, 106, 120, 146, 264, 828, 965, 1944, 4822, 12089, 14427, 17354, 42335, 46395, 58348, 190632
Offset: 1
Cf.
A084714 (smallest prime of the form (2n-1)^k - 2).
Cf.
A128472 (smallest prime of the form (2n-1)^k - 2 for k > (2n-1)).
-
Do[ f = 21^n - 2; If[ PrimeQ[ f ], Print[ {n, f} ] ], {n,1,1000} ]
A191469
Numbers n such that 7^n - 6 is prime.
Original entry on oeis.org
2, 3, 6, 9, 21, 25, 33, 49, 54, 133, 245, 255, 318, 1023, 1486, 3334, 6821, 8555, 11605, 42502, 44409, 90291, 92511, 140303
Offset: 1
-
[n: n in [1..1000]| IsPrime(7^n-6)]
-
A191469:=n->`if`(isprime(7^n-6),n,NULL): seq(A191469(n), n=1..10^3); # Wesley Ivan Hurt, Nov 14 2014
-
Select[Range[1,5000],PrimeQ[7^#-6]&] (* Vincenzo Librandi, Aug 05 2012 *)
-
for(n=1, 10^6, if(isprime(7^n-6), print1(n, ", ")))
A217130
Numbers n such that 7^n + 6 is prime.
Original entry on oeis.org
0, 1, 3, 16, 36, 244, 315, 2577, 9500, 17596, 25551, 32193, 32835, 36504, 75136
Offset: 1
-
/* The code produces the sequence up to 315: */ [n: n in [0..2000] | IsPrime(7^n+6)];
-
Select[Range[0, 5000], PrimeQ[7^# + 6] &]
-
for(n=1, 5000, if(isprime(7^n+6), print1(n", ")))
Showing 1-10 of 25 results.
Comments