cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A090669 Numbers k such that 7^k - 2 is a prime.

Original entry on oeis.org

1, 2, 4, 7, 8, 12, 15, 28, 31, 84, 98, 128, 238, 302, 859, 1508, 1586, 2091, 2796, 2888, 3924, 4815, 5636, 6596, 7090, 20176, 22176, 56386, 84050, 115515, 245608, 259710, 274120
Offset: 1

Views

Author

Herman H. Rosenfeld (herm3(AT)pacbell.net), Dec 16 2003

Keywords

Examples

			7^12 - 2 = 13841287199 a prime number.
		

Crossrefs

Programs

Extensions

Corrected and extended by Robert G. Wilson v and Ray Chandler, Dec 22 2003
Three more terms from Ryan Propper, Dec 07 2008
a(28)-a(30) from Robert Price, Jan 24 2014
a(31)-a(32) from Paul Bourdelais, Jan 29 2021
a(33) from Paul Bourdelais, Aug 02 2023

A096305 Numbers k such that 7^k + 4 is prime.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 9, 14, 23, 129, 198, 235, 275, 630, 870, 1033, 1290, 3293, 3458, 11466, 13885, 25893, 32186, 33139, 58125, 78929, 97197, 121933, 128422, 442674
Offset: 1

Views

Author

Herman H. Rosenfeld (herm3(AT)pacbell.net), Jun 26 2004

Keywords

Examples

			7^14 + 4 = 678223072853 is a prime number.
		

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[7^n+4], Print[n]], {n, 1, 1000}]
  • PARI
    for(n=0, 10^5, if(ispseudoprime(7^n+4), print1(n, ", "))) \\  Felix Fröhlich, Jun 04 2014

Extensions

More terms (probable primes) from Rick L. Shepherd, Jun 29 2004
7 more terms from Jason Earls, Feb 16 2008
a(25)-a(27) from Robert Price, Jan 24 2014
a(28)-a(29) from Lelio R. Paula, Nov 2014
a(30) from Paul Bourdelais, Feb 11 2021

A217130 Numbers n such that 7^n + 6 is prime.

Original entry on oeis.org

0, 1, 3, 16, 36, 244, 315, 2577, 9500, 17596, 25551, 32193, 32835, 36504, 75136
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(16) > 10^5. - Robert Price, Jan 24 2014

Crossrefs

Programs

  • Magma
    /* The code produces the sequence up to 315: */ [n: n in [0..2000] | IsPrime(7^n+6)];
  • Mathematica
    Select[Range[0, 5000], PrimeQ[7^# + 6] &]
  • PARI
    for(n=1, 5000, if(isprime(7^n+6), print1(n", ")))
    

Extensions

a(9)-a(15) from Robert Price, Jan 24 2014

A217131 Numbers n such that 7^n - 8 is prime.

Original entry on oeis.org

2, 4, 8, 10, 50, 106, 182, 293, 964, 1108, 1654, 1756, 4601, 8870, 15100, 17446, 22742, 34570, 50150, 95276
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(21) > 10^5. - Robert Price, Jan 23 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 5000], PrimeQ[7^#  - 8] &]
  • PARI
    for(n=1, 5*10^3, if(isprime(7^n-8), print1(n, ", ")))

Extensions

a(14)-a(20) from Robert Price, Jan 23 2014

A152213 Numbers n such that 7^n + 12 is prime.

Original entry on oeis.org

0, 1, 2, 9, 66, 164, 221, 224, 2058, 3224, 12284, 13457, 22277, 22761, 83381
Offset: 1

Views

Author

Huseyin Azoguz (huseyin(AT)mmnetz.de), Nov 29 2008

Keywords

Comments

a(16) > 10^5. - Robert Price, Jan 24 2014

Crossrefs

Programs

Extensions

a(11)-a(15) from Robert Price, Jan 24 2014

A217132 Numbers n such that 7^n + 10 is prime.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 11, 26, 29, 41, 53, 55, 84, 86, 144, 179, 229, 238, 414, 616, 1158, 4111, 5577, 13237, 15244, 48578, 66074
Offset: 1

Views

Author

Vincenzo Librandi, Oct 01 2012

Keywords

Comments

a(29) > 10^5. - Robert Price, Jan 24 2014

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 3000], PrimeQ[7^# + 10] &]
  • PARI
    for(n=1, 3*10^3, if(isprime(7^n+10), print1(n", ")))

Extensions

a(23)-a(28) from Robert Price, Jan 24 2014

A236371 Numbers n such that 7^n - 12 is prime.

Original entry on oeis.org

2, 3, 4, 12, 27, 28, 34, 36, 147, 179, 242, 276, 278, 466, 735, 2371, 4548, 5606, 10324, 82899
Offset: 1

Views

Author

Robert Price, Jan 23 2014

Keywords

Comments

a(21) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 100000], PrimeQ[7^# - 12] &]
  • PARI
    for(n=1, 5*10^5, if(isprime(7^n-12), print1(n, ", ")))

A028499 6-hyperperfect numbers: n = 6*(sigma(n) - n - 1) + 1.

Original entry on oeis.org

301, 16513, 60110701, 1977225901, 2733834545701, 232630479398401, 336823287227717101
Offset: 1

Views

Author

Keywords

Comments

(7^k-6)*7^(k-1) is a term for all k in A191469. - Max Alekseyev, Nov 17 2019

Crossrefs

Programs

  • PARI
    isok(n) = 6*(sigma(n) - n - 1) + 1 == n; \\ Michel Marcus, Nov 18 2019

Extensions

a(5) from Donovan Johnson, Nov 20 2012
a(6) from Donovan Johnson confirmed by Max Alekseyev, Nov 17 2019
a(7) from Giovanni Resta confirmed by Max Alekseyev, May 23 2025

A291861 Prime numbers of the form 7^k - 6.

Original entry on oeis.org

43, 337, 117643, 40353601, 558545864083284001, 1341068619663964900801, 7730993719707444524137094401, 256923577521058878088611477224235621321601, 4318114567396436564035293097707728087552248843
Offset: 1

Views

Author

Robert Price, Sep 04 2017

Keywords

Crossrefs

Cf. A191469.

Programs

  • Mathematica
    Select[Table[7^k - 6, {k, 1, 100}], PrimeQ[#] &]

A305531 Smallest k >= 1 such that (n-1)*n^k + 1 is prime.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 3, 10, 3, 1, 2, 1, 1, 4, 1, 29, 14, 1, 1, 14, 2, 1, 2, 4, 1, 2, 4, 5, 12, 2, 1, 2, 2, 9, 16, 1, 2, 80, 1, 2, 4, 2, 3, 16, 2, 2, 2, 1, 15, 960, 15, 1, 4, 3, 1, 14, 1, 6, 20, 1, 3, 946, 6, 1, 18, 10, 1, 4, 1, 5, 42, 4, 1, 828, 1, 1, 2, 1, 12, 2, 6, 4, 30, 3, 3022, 2, 1, 1
Offset: 2

Views

Author

Eric Chen, Jun 04 2018

Keywords

Comments

a(prime(j)) + 1 = A087139(j).
a(123) > 10^5, a(342) > 10^5, see the Barnes link for the Sierpinski base-123 and base-342 problems.
a(251) > 73000, see A087139.

Crossrefs

For the numbers k such that these forms are prime:
a1(b): numbers k such that (b-1)*b^k-1 is prime
a2(b): numbers k such that (b-1)*b^k+1 is prime
a3(b): numbers k such that (b+1)*b^k-1 is prime
a4(b): numbers k such that (b+1)*b^k+1 is prime (no such k exists when b == 1 (mod 3))
a5(b): numbers k such that b^k-(b-1) is prime
a6(b): numbers k such that b^k+(b-1) is prime
a7(b): numbers k such that b^k-(b+1) is prime
a8(b): numbers k such that b^k+(b+1) is prime (no such k exists when b == 1 (mod 3)).
Using "-------" if there is currently no OEIS sequence and "xxxxxxx" if no such k exists (this occurs only for a4(b) and a8(b) for b == 1 (mod 3)):
.
b a1(b) a2(b) a3(b) a4(b) a5(b) a6(b) a7(b) a8(b)
--------------------------------------------------------------------
4 A272057 ------- ------- xxxxxxx A059266 A089437 A217348 xxxxxxx
7 A046866 A245241 ------- xxxxxxx A191469 A217130 A217131 xxxxxxx
11 A046867 A057462 ------- ------- ------- ------- ------- -------
12 A079907 A251259 ------- ------- ------- A137654 ------- -------
13 A297348 ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
14 A273523 ------- ------- ------- ------- ------- ------- -------
15 ------- ------- ------- ------- ------- ------- ------- -------
16 ------- ------- ------- xxxxxxx ------- ------- ------- xxxxxxx
Cf. (smallest k such that these forms are prime) A122396 (a1(b)+1 for prime b), A087139 (a2(b)+1 for prime b), A113516 (a5(b)), A076845 (a6(b)), A178250 (a7(b)).

Programs

  • PARI
    a(n)=for(k=1,2^16,if(ispseudoprime((n-1)*n^k+1),return(k)))
Showing 1-10 of 10 results.