cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A005101 Abundant numbers (sum of divisors of m exceeds 2m).

Original entry on oeis.org

12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 100, 102, 104, 108, 112, 114, 120, 126, 132, 138, 140, 144, 150, 156, 160, 162, 168, 174, 176, 180, 186, 192, 196, 198, 200, 204, 208, 210, 216, 220, 222, 224, 228, 234, 240, 246, 252, 258, 260, 264, 270
Offset: 1

Views

Author

Keywords

Comments

A number m is abundant if sigma(m) > 2m (this sequence), perfect if sigma(m) = 2m (cf. A000396), or deficient if sigma(m) < 2m (cf. A005100), where sigma(m) is the sum of the divisors of m (A000203).
While the first even abundant number is 12 = 2^2*3, the first odd abundant is 945 = 3^3*5*7, the 232nd abundant number!
It appears that for m abundant and > 23, 2*A001055(m) - A101113(m) is NOT 0. - Eric Desbiaux, Jun 01 2009
If m is a term so is every positive multiple of m. "Primitive" terms are in A091191.
If m=6k (k>=2), then sigma(m) >= 1 + k + 2*k + 3*k + 6*k > 12*k = 2*m. Thus all such m are in the sequence.
According to Deléglise (1998), the abundant numbers have natural density 0.2474 < A(2) < 0.2480. Thus the n-th abundant number is asymptotic to 4.0322*n < n/A(2) < 4.0421*n. - Daniel Forgues, Oct 11 2015
From Bob Selcoe, Mar 28 2017 (prompted by correspondence with Peter Seymour): (Start)
Applying similar logic as the proof that all multiples of 6 >= 12 appear in the sequence, for all odd primes p:
i) all numbers of the form j*p*2^k (j >= 1) appear in the sequence when p < 2^(k+1) - 1;
ii) no numbers appear when p > 2^(k+1) - 1 (i.e., are deficient and are in A005100);
iii) when p = 2^(k+1) - 1 (i.e., perfect numbers, A000396), j*p*2^k (j >= 2) appear.
Note that redundancies are eliminated when evaluating p only in the interval [2^k, 2^(k+1)].
The first few even terms not of the forms i or iii are {70, 350, 490, 550, 572, 650, 770, ...}. (End)

References

  • L. E. Dickson, Theorems and tables on the sum of the divisors of a number, Quart. J. Pure Appl. Math., Vol. 44 (1913), pp. 264-296.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B2, pp. 74-84.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 128.

Crossrefs

Cf. A005231 and A006038 (odd abundant numbers).
Cf. A094268 (n consecutive abundant numbers).
Cf. A173490 (even abundant numbers).
Cf. A001065.
Cf. A000396 (perfect numbers).
Cf. A302991.

Programs

  • Haskell
    a005101 n = a005101_list !! (n-1)
    a005101_list = filter (\x -> a001065 x > x) [1..]
    -- Reinhard Zumkeller, Nov 01 2015, Jan 21 2013
    
  • Maple
    with(numtheory): for n from 1 to 270 do if sigma(n)>2*n then printf(`%d,`,n) fi: od:
    isA005101 := proc(n)
        simplify(numtheory[sigma](n) > 2*n) ;
    end proc: # R. J. Mathar, Jun 18 2015
    A005101 := proc(n)
        option remember ;
        local a ;
        if n =1 then
            12 ;
        else
            a := procname(n-1)+1 ;
            while numtheory[sigma](a) <= 2*a do
                a := a+1 ;
            end do ;
            a ;
        end if ;
    end proc: # R. J. Mathar, Oct 11 2017
  • Mathematica
    abQ[n_] := DivisorSigma[1, n] > 2n; A005101 = Select[ Range[270], abQ[ # ] &] (* Robert G. Wilson v, Sep 15 2005 *)
    Select[Range[300], DivisorSigma[1, #] > 2 # &] (* Vincenzo Librandi, Oct 12 2015 *)
  • PARI
    isA005101(n) = (sigma(n) > 2*n) \\ Michael B. Porter, Nov 07 2009
    
  • Python
    from sympy import divisors
    def ok(n): return sum(divisors(n)) > 2*n
    print(list(filter(ok, range(1, 271)))) # Michael S. Branicky, Aug 29 2021
    
  • Python
    from sympy import divisor_sigma
    from itertools import count, islice
    def A005101_gen(startvalue=1): return filter(lambda n:divisor_sigma(n) > 2*n, count(max(startvalue, 1))) # generator of terms >= startvalue
    A005101_list = list(islice(A005101_gen(), 20)) # Chai Wah Wu, Jan 14 2022

Formula

a(n) is asymptotic to C*n with C=4.038... (Deléglise, 1998). - Benoit Cloitre, Sep 04 2002
A005101 = { n | A033880(n) > 0 }. - M. F. Hasler, Apr 19 2012
A001065(a(n)) > a(n). - Reinhard Zumkeller, Nov 01 2015

A169822 Numbers k such that A(k+1) = A(k) + 1, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

1432, 1487, 1849, 2742, 5380, 5434, 6474, 6786, 9752, 10674, 12311, 14115, 14557, 15237, 17266, 17558, 18987, 19138, 19761, 20110, 20259, 20343, 20967, 20997, 22262, 22735, 24342, 25650, 26003, 26471, 27122, 27721, 28914, 28968, 29741, 30203, 30294, 31274, 33322
Offset: 1

Views

Author

N. J. A. Sloane, May 29 2010

Keywords

Comments

A096399 is the main entry for this sequence.

Crossrefs

Programs

  • GAP
    A:=Filtered([1..150000],n->Sigma(n)>2*n);;
      a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+1); # Muniru A Asiru, Jun 10 2018
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..150000]):
      a:=select(j->A[j+1]=A[j]+1,[$1..nops(A)-1]); # Muniru A Asiru, Jun 10 2018
  • Mathematica
    fQ[n_] := DivisorSigma[1, n] > 2 n; lst = {}; c = 0; k = 1; While[k < 125000, If[fQ@k, c++; If[fQ[k - 1], AppendTo[lst, c - 1]]]; k++ ]; lst (* Robert G. Wilson v, Jun 11 2010 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 1, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

a(n) = A091194(A096399(n)). - Amiram Eldar, Mar 01 2025

Extensions

a(10) onwards from Robert G. Wilson v, Jun 11 2010

A303741 Numbers k such that A(k+1) = A(k) + 2, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

2, 7, 10, 14, 16, 19, 22, 23, 26, 31, 36, 39, 44, 45, 48, 51, 52, 59, 62, 65, 70, 71, 74, 79, 81, 82, 83, 86, 87, 90, 93, 96, 99, 104, 107, 110, 111, 114, 118, 120, 125, 128, 131, 133, 135, 138, 141, 146, 149, 150, 155, 156, 158, 164, 169, 170, 175, 178, 179
Offset: 1

Views

Author

Muniru A Asiru, Jun 22 2018

Keywords

Crossrefs

A231086 is the main entry for this sequence.

Programs

  • GAP
    A:=Filtered([1..1000],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+2);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..1000]):  a:=select(j->A[j+1]=A[j]+2,[$1..nops(A)-1]);
  • Mathematica
    Position[Differences[Select[Range[750], DivisorSigma[1, #] > 2*# &]], 2] // Flatten (* Amiram Eldar, Mar 15 2024 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 2, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

Sequence is { k | A005101(k+1) = A005101(k) + 2 }.
a(n) = A091194(A231086(n)). - Amiram Eldar, Mar 01 2025

A316095 Numbers m such that A(m+1) = A(m) + 3, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

231, 232, 385, 386, 544, 545, 699, 700, 858, 859, 1014, 1015, 1172, 1173, 1326, 1327, 1431, 1488, 1600, 1601, 1645, 1646, 1699, 1700, 1806, 1807, 1850, 1959, 1960, 2015, 2016, 2093, 2094, 2119, 2120, 2221, 2222, 2272, 2273, 2378, 2379, 2433, 2434, 2583, 2584
Offset: 1

Views

Author

Muniru A Asiru, Jun 25 2018

Keywords

Crossrefs

A228382 is the main sequence for this entry.
Numbers m such that A(m+1) = A(m) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), this sequence (k=3), A316096 (k=4), A316097 (k=6).

Programs

  • GAP
    A:=Filtered([1..20000],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+3);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..20000]):  a:=select(j->A[j+1]=A[j]+3,[$1..nops(A)-1]);
  • Mathematica
    Position[Map[{#1, #2 - 3} & @@ # &, Partition[Select[Range[12000], DivisorSigma[1, #] > 2 # &], 2, 1]], ?(SameQ @@ # &)][[All, 1]] (* _Michael De Vlieger, Jun 29 2018 *)
  • PARI
    lista(nn) = {my(va = select(x->(sigma(x) > 2*x), [1..nn]), dva = vector(#va-1, k, va[k+1] - va[k])); select(x->(x==3), dva, 1);} \\ Michel Marcus, Jul 03 2018

Formula

Sequence is { m | A005101(m+1) = A005101(m) + 3 }.
Sequence is { m | A125115(m) = 3 }.
a(n) = A091194(A228382(n)). - Amiram Eldar, Mar 01 2025

A316096 Numbers m such that A(m+1) = A(m) + 4, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

3, 6, 11, 13, 17, 18, 21, 24, 25, 32, 35, 40, 43, 46, 47, 50, 53, 60, 63, 64, 69, 72, 75, 78, 85, 88, 91, 94, 95, 100, 105, 106, 109, 112, 115, 117, 121, 124, 127, 130, 132, 136, 139, 140, 147, 148, 151, 154, 157, 159, 165, 168, 171, 176, 177, 180, 181, 184
Offset: 1

Views

Author

Muniru A Asiru, Jun 25 2018

Keywords

Crossrefs

A316098 is the main sequence for this entry.
Numbers m such that A(m+1) = A(m) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), A316095 (k=3), this sequence (k=4), A316097 (k=6).

Programs

  • GAP
    A:=Filtered([1..1000],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+4);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..1000]):  a:=select(j->A[j+1]=A[j]+4,[$1..nops(A)-1]);
  • Mathematica
    Position[Map[{#1, #2 - 4} & @@ # &, Partition[Select[Range[10^3], DivisorSigma[1, #] > 2 # &], 2, 1]], ?(SameQ @@ # &)][[All, 1]] (* _Michael De Vlieger, Jun 29 2018 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 4, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

Sequence is { m | A005101(m+1) = A005101(m) + 4 }.
Sequence is { m | A125115(m) = 4 }.
a(n) = A091194(A316098(n)). - Amiram Eldar, Mar 01 2025

A316097 Numbers m such that A(m+1) = A(m) + 6, where A() = A005101() are the abundant numbers.

Original entry on oeis.org

1, 4, 5, 8, 9, 12, 15, 20, 27, 28, 29, 30, 33, 34, 37, 38, 41, 42, 49, 54, 55, 56, 57, 58, 61, 66, 67, 68, 73, 76, 77, 80, 84, 89, 92, 97, 98, 101, 102, 103, 108, 113, 116, 119, 122, 123, 126, 129, 134, 137, 142, 143, 144, 145, 152, 153, 160, 161, 162, 163
Offset: 1

Views

Author

Muniru A Asiru, Jun 25 2018

Keywords

Crossrefs

A316099 is the main sequence for this entry.
Numbers m such that A(m+1) = A(m) + k, where A() = A005101() are the abundant numbers: A169822 (k=1), A303741 (k=2), A316095 (k=3), A316096 (k=4), this sequence (k=6).

Programs

  • GAP
    A:=Filtered([1..700],n->Sigma(n)>2*n);;  a:=Filtered([1..Length(A)-1],i->A[i+1]=A[i]+6);
    
  • Maple
    with(numtheory): A:=select(n->sigma(n)>2*n,[$1..700]):  a:=select(j->A[j+1]=A[j]+6,[$1..nops(A)-1]);
  • Mathematica
    Position[Map[{#1, #2 - 6} & @@ # &, Partition[Select[Range[10^3], DivisorSigma[1, #] > 2 # &], 2, 1]], ?(SameQ @@ # &)][[All, 1]] (* _Michael De Vlieger, Jun 29 2018 *)
  • PARI
    list(lim) = {my(k = 1, k2, m = 0); for(k2 = 2, lim, if(sigma(k2, -1) > 2, if(k2 == k1 + 6, print1(m, ", ")); m++; k1 = k2));} \\ Amiram Eldar, Mar 01 2025

Formula

Sequence is { m | A005101(m+1) = A005101(m) + 6 }.
Sequence is { m | A125115(m) = 6 }.
a(n) = A091194(A316099(n)). - Amiram Eldar, Mar 01 2025

A084840 Write the numbers 1, 2, ... in a triangle with n terms in the n-th row; a(n) = number of abundant integers in n-th row.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 1, 2, 2, 2, 3, 3, 4, 4, 4, 2, 4, 4, 4, 7, 5, 4, 6, 5, 7, 6, 8, 7, 6, 9, 7, 8, 9, 8, 9, 9, 8, 10, 10, 10, 10, 10, 12, 11, 9, 12, 11, 11, 14, 10, 14, 14, 13, 14, 13, 13, 14, 16, 15, 13, 16, 15, 17, 17, 15, 18, 14, 17, 16, 19, 18, 19, 15, 20, 19, 18, 20, 20, 18, 20, 21, 22
Offset: 1

Views

Author

Jason Earls, Jun 08 2003

Keywords

Examples

			Triangle begins
1 (0 abundant)
2 3 (0 abundant)
4 5 6 (0 abundant)
7 8 9 10 (0 abundant)
11 12 13 14 15 (1 abundant)
16 17 18 19 20 21 (2 abundant)
22 23 24 25 26 27 28 (1 abundant)
		

Crossrefs

Programs

Formula

a(n) = A091194(A000217(n)) - A091194(A000217(n-1)). - Robert Israel, Aug 13 2024

A091195 Number of numbers <= n having only one abundant divisor (A091191).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 27 2003

Keywords

Crossrefs

Partial sums of A294930.

Programs

A256562 Number of deficient numbers <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 21, 22, 22, 23, 23, 24, 25, 26, 27, 28, 28, 29, 30, 31, 31, 32, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 42, 43, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 51, 52, 53
Offset: 1

Views

Author

Michel Marcus, Apr 02 2015

Keywords

Examples

			For k=1 to 5, all numbers are deficients so a(k) = k in this range.
a(6) = 5 since 6 is the first number that is not deficient.
		

Crossrefs

Partial sums of A294934.
Cf. A000396 (perfect), A005100 (deficient), A005101 (abundant).
Cf. A091194 (number of abundant numbers <= n).

Programs

  • Magma
    [#[k:k in [1..n]| DivisorSigma(1,k) lt 2*k]:n in [1..70]]; // Marius A. Burtea, Nov 06 2019
  • Mathematica
    a[n_]:=Length[Select[Range[n],DivisorSigma[1,#]/#<2&]];a/@Range[68] (* Ivan N. Ianakiev, Apr 03 2015 *)
  • PARI
    a(n) = sum(k=1, n, sigma(k)/k < 2);
    

Formula

a(n) ~ c*n, where c = 0.752380... is the asymptotic density of the deficient numbers (A318172). - Amiram Eldar, Mar 21 2021

A387155 The number of n-free abundant numbers below the least number k that is not n-free whose sum of n-free divisors is larger than 2*k.

Original entry on oeis.org

22148167706, 52012, 10828, 24601, 23660, 29114, 58967, 118828, 238600, 478099, 957324, 1916191, 3834167, 7669094, 15335488, 30667762, 61337894, 122679755, 245357929, 490718137, 981456651, 1962956352, 3925957422, 7851819466, 15703524589, 31406984903, 62813576969
Offset: 2

Views

Author

Amiram Eldar, Aug 19 2025

Keywords

Comments

n-free numbers are numbers that are not divisible by an n-th power larger than 1. E.g., A005117, A004709, and A046100 for n = 2, 3, and 4, respectively.
The sum of n-free divisors of a number is the sum of its divisors that are n-free numbers. E.g., A048250, A073185, and A385006 for n = 2, 3, and, respectively.

Examples

			a(2) = 22148167706 because there are 22148167706 squarefree numbers k such that A048250(k) > 2*k (i.e., terms of A087248) that are less than the least nonsquarefree number k that has this property, A387154(2) = 401120980260.
a(3) = 52012 because there are 52012 cubefree numbers k such that A073185(k) > 2*k (i.e., terms of A357695) that are less than the least noncubefree number k that has this property, A387154(3) = 360360.
		

Crossrefs

Programs

  • Mathematica
    freeQ[n_, k_] := AllTrue[FactorInteger[n][[;; , 2]], # < k &];
    sigma[n_, k_] := Times @@ ((First[#]^(Min[Last[#], k - 1] + 1) - 1)/(First[#] - 1) & /@ FactorInteger[n]);
    a[n_] := Module[{m = 2, c = 0}, While[True, If[sigma[m, n] > 2*m, c++; If[!freeQ[m, n], Break[]]]; m++]; c-1];
  • PARI
    isfree(n, k) = if(n == 1, 1, my(e = factor(n)[,2]); for(i=1, #e, if(e[i] >= k, return(0))); 1);
    sigmafree(n, k) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(min(f[i,2],k-1)+1)-1)/(f[i,1]-1));}
    a(n) = {my(m = 2, c = 0); while(1, if(sigmafree(m, n) > 2*m, c++; if(!isfree(m, n), break)); m++); c-1;}

Formula

Let A_k(n) be the number of k-free abundant numbers that are not exceeding n. Then, a(n) = A_n(A387154(n)) - 1.
a(n) ~ c * 945 * 2^n, where c = A302991.
Showing 1-10 of 10 results.