cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052562 a(n) = 5^n * n!.

Original entry on oeis.org

1, 5, 50, 750, 15000, 375000, 11250000, 393750000, 15750000000, 708750000000, 35437500000000, 1949062500000000, 116943750000000000, 7601343750000000000, 532094062500000000000, 39907054687500000000000
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

A simple regular expression in a labeled universe.
For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_5)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001

Crossrefs

Programs

  • Magma
    [5^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Z,Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    with(combstruct):A:=[N,{N=Cycle(Union(Z$5))},labeled]: seq(count(A,size=n)/5,n=1..16); # Zerinvary Lajos, Dec 05 2007
  • Mathematica
    Table[5^n*n!, {n, 0, 20}] (* Wesley Ivan Hurt, Sep 28 2013 *)
  • PARI
    {a(n) = 5^n*n!}; \\ G. C. Greubel, May 05 2019
    
  • Sage
    [5^n*factorial(n) for n in (0..20)] # G. C. Greubel, May 05 2019

Formula

a(n) = A051150(n+1, 0) (first column of triangle).
E.g.f.: 1/(1-5*x).
a(n) = 5*n*a(n-1) with a(0)=1.
G.f.: 1/(1-5*x/(1-5*x/(1-10*x/(1-10*x/(1-15*x/(1-15*x/(1-20*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
G.f.: 1/Q(0), where Q(k) = 1 - 5*x*(2*k+1) - 25*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
a(n) = n!*A000351(n). - R. J. Mathar, Aug 21 2014
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/5) (A092514).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/5) (A092618). (End)

Extensions

Name changed by Arkadiusz Wesolowski, Oct 04 2011

A195267 a(n) = 2*n^(2*n)*(1+ sum((1+k^(n+2)/n+k/n)/(n^k*k!), k=1..infinity)) / exp(1/n).

Original entry on oeis.org

14, 89, 3104, 265832, 42711550, 11454711984, 4840928618302, 3108267243405312, 2924919606477510504, 3870562086323220000000, 6908112063470228210507358, 16038451894952529045493383168, 47076979725683125083464370176990, 170928617514191160703263296201650176
Offset: 1

Views

Author

Keywords

Examples

			n=1: 2*(1+ sum((1+k^3+k)/k!, k=1..infinity))/exp(1) = 14.
		

Crossrefs

A267318 Continued fraction expansion of e^(1/5).

Original entry on oeis.org

1, 4, 1, 1, 14, 1, 1, 24, 1, 1, 34, 1, 1, 44, 1, 1, 54, 1, 1, 64, 1, 1, 74, 1, 1, 84, 1, 1, 94, 1, 1, 104, 1, 1, 114, 1, 1, 124, 1, 1, 134, 1, 1, 144, 1, 1, 154, 1, 1, 164, 1, 1, 174, 1, 1, 184, 1, 1, 194, 1, 1, 204, 1, 1, 214, 1, 1, 224, 1, 1, 234, 1, 1, 244, 1, 1, 254, 1, 1, 264, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 13 2016

Keywords

Comments

e^(1/5) is a transcendental number.
In general, the ordinary generating function for the continued fraction expansion of e^(1/k), with k = 1, 2, 3..., is (1 + (k - 1)*x + x^2 - (k + 1)*x^3 + 7*x^4 - x^5)/(1 - x^3)^2.

Examples

			e^(1/5) = 1 + 1/(4 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + 1/...))))).
		

Crossrefs

Cf. A092514.
Cf. continued fraction expansion of e^(1/k): A003417 (k=1), A058281 (k=2), A078689 (k=3), A078688 (k=4), this sequence (k=5).

Programs

  • Magma
    [1+(3+10*Floor(n/3))*(1-(n-1)^2 mod 3): n in [0..90]]; // Bruno Berselli, Feb 04 2016
  • Mathematica
    ContinuedFraction[Exp[1/5], 82]
    LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 4, 1, 1, 14, 1}, 82]
    CoefficientList[Series[(1 + 4 x + x^2 - x^3 + 6 x^4 - x^5) / (x^3 - 1)^2, {x, 0, 70}], x] (* Vincenzo Librandi, Jan 13 2016 *)
    Table[1 + (3 + 10 Floor[n/3]) (1 - Mod[(n - 1)^2, 3]), {n, 0, 90}] (* Bruno Berselli, Feb 04 2016 *)

Formula

G.f.: (1 + 4*x + x^2 - x^3 + 6*x^4 - x^5)/(1 - x^3)^2.
a(n) = 1 + (3 + 10*floor(n/3))*(1 - (n-1)^2 mod 3). [Bruno Berselli, Feb 04 2016]

Extensions

Edited by Bruno Berselli, Feb 04 2016
Showing 1-3 of 3 results.