cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A104745 a(n) = 5^n + n.

Original entry on oeis.org

1, 6, 27, 128, 629, 3130, 15631, 78132, 390633, 1953134, 9765635, 48828136, 244140637, 1220703138, 6103515639, 30517578140, 152587890641, 762939453142, 3814697265643, 19073486328144, 95367431640645, 476837158203146, 2384185791015647, 11920928955078148, 59604644775390649
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Comments

Numbers m=5^n+n such that equation x=5^(m-x) has solution x=5^n, see A104744.
No primes of the form 5^n+n for n < 7954. - Thomas Ordowski, Oct 28 2013
a(7954) is prime (5560 digits). - Thomas Ordowski, May 07 2015

Crossrefs

Programs

Formula

From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1-x-4*x^2)/((1-5*x)*(1-x)^2).
a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3). (End)
E.g.f.: exp(x)*(exp(4*x) + x). - Elmo R. Oliveira, Mar 05 2025

Extensions

More terms from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 09 2007

A097792 Numbers of the form 4k^4 or (kp)^p for prime p > 2 and k = 1, 2, 3, ....

Original entry on oeis.org

4, 27, 64, 216, 324, 729, 1024, 1728, 2500, 3125, 3375, 5184, 5832, 9261, 9604, 13824, 16384, 19683, 26244, 27000, 35937, 40000, 46656, 58564, 59319, 74088, 82944, 91125, 100000, 110592, 114244, 132651, 153664, 157464, 185193, 202500, 216000
Offset: 1

Views

Author

T. D. Noe, Aug 24 2004

Keywords

Comments

A result of Vahlen shows that the polynomial x^n + n is reducible over the integers for n in this sequence and no other n.

Crossrefs

Cf. A093324 (least k such that n^k+k is prime), A097764 (numbers of the form (kp)^p).

Programs

  • Mathematica
    nMax=500000; lst={}; k=1; While[4k^4<=nMax, AppendTo[lst, 4k^4]; k++ ]; n=2; While[p=Prime[n]; p^p<=nMax, k=1; While[(k*p)^p<=nMax, AppendTo[lst, (k*p)^p]; k++ ]; n++ ]; Union[lst]
  • PARI
    upto(n) = {my(res = List()); for(i = 1, sqrtnint(n \ 4, 4), listput(res, 4*i^4) ); forprime(p = 3, log(n), pp = p^p; for(k = 1, sqrtnint(n \ pp, p), listput(res, pp * k ^ p); ) ); listsort(res); res } \\ David A. Corneth, Jan 12 2019
    
  • PARI
    select( {is_A097792(n, p=0)= n%4==0 && ispower(n\4,4) || ((2 < p = ispower(n,,&n)) && if(isprime(p), n%p==0, foreach(factor(p)[,1], q, q%2 && n%q==0 && return(1))))}, [1..10^4]) \\ M. F. Hasler, Jul 07 2024
    
  • Python
    from sympy import isprime, perfect_power, primefactors
    def is_A097792(n):
        return n%4==0 and (perfect_power(n//4,[4]) or n==4) or (
            p := perfect_power(n)) and p[1] > 2 and (p[0]%p[1]==0 if isprime(p[1])
            else any(p[0]%q==0 for q in primefactors(p[1]) if q > 2))
    # M. F. Hasler, Jul 07 2024

Formula

Is a(n) ~ c * n^3? - David A. Corneth, Jan 12 2019

A099227 Primes of the form m^k+k, with m and k > 1.

Original entry on oeis.org

11, 37, 67, 83, 227, 443, 521, 1091, 1523, 2027, 3251, 4099, 6563, 6569, 9803, 10651, 11027, 12323, 13691, 15131, 17579, 21611, 29243, 32771, 32783, 47963, 50627, 56171, 59051, 62003, 65027, 74531, 88211, 91811, 95483, 103043, 119027, 123203
Offset: 1

Views

Author

T. D. Noe, Oct 06 2004

Keywords

Comments

It appears that primes of this form are much less common than primes of the form m^k-k (A099228).
As N increases, squares <= N outnumber all higher powers <= N by an increasingly wide margin, so the above observation is increasingly a consequence of the fact that primes of the form m^2 + 2 are less common than primes of the form m^2 - 2. Among numbers of these two forms, multiples of 3 make up 2/3 of the former, but none of the latter. - Jon E. Schoenfield, Jun 05 2021

Crossrefs

Cf. A099225 (numbers of the form m^k+k, with m and k > 1), A093324 (least k such that n^k+k is prime).
Cf. A099228.

Programs

  • Mathematica
    nLim=200000; lst={}; Do[k=2; While[n=m^k+k; n<=nLim, AppendTo[lst, n]; k++ ], {m, 2, Sqrt[nLim]}]; Select[Union[lst], PrimeQ]
  • PARI
    list(lim)=my(v=List()); for(e=2,logint(lim\=1,2), forstep(n=3-e%2,sqrtnint(lim-e,e),2, my(t=n^e+e); if(isprime(t), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jun 23 2023

A303121 Least k>1 such that k^n + n is prime, 0 if no such k exists.

Original entry on oeis.org

2, 3, 2, 0, 2, 175, 16, 3, 2, 539, 32, 221, 118, 417, 2, 85, 14, 133, 22, 81, 76, 115, 12, 55, 28, 15, 0, 2465, 110, 31, 232, 117, 230, 3, 12, 851, 4, 375, 2, 1599, 48, 5461, 46, 15, 218, 6815, 78, 7, 100, 993, 28, 901, 624, 13, 252, 183, 226, 43247, 104, 5063, 1348, 777, 1294, 0, 1806
Offset: 1

Views

Author

Hugo Pfoertner, Apr 23 2018

Keywords

Comments

The values of n for which k^n + n is reducible over the integers are given in A097792. - Joseph Myers, Allan C. Wechsler Apr 16 2018

Examples

			a(2) = 3 because 3^2 + 3 = A303122(2) = 11 is prime, whereas 2^2 + 2 = 6 is composite.
		

Crossrefs

Formula

If n + 1 is composite, then a(n) = A072883(n). - Altug Alkan, Apr 23 2018

A084743 Smallest prime of the form n^k + k, or 0 if no such prime exists.

Original entry on oeis.org

2, 3, 11, 5
Offset: 1

Views

Author

Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 15 2003

Keywords

Comments

a(5) > 5^18 +18 = 3814697265643. Conjecture: No entry is zero.
See A093324 for the values of k. The next term, a(5) = 5^7954+7954, has 5560 digits and is too large to display here. - T. D. Noe, Oct 05 2007
a(6)-a(10) are 7, 54116956037952111668959660883, 16296287810675888690147565507275025288411747149327490005089123594835050398106693649467179109, 83, and 11, respectively. a(11) > 11^190000 + 190000. See A093324 for the k-values. - Derek Orr, Aug 08 2014

Crossrefs

Cf. A093324.

Programs

  • PARI
    a(n)=for(k=1,8000,s=n^k+k;if(ispseudoprime(s),return(s)))
    vector(10,n,a(n)) \\ Derek Orr, Aug 08 2014
Showing 1-5 of 5 results.