A058798 a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
Offset: 0
Examples
Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..449
- Svante Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
Crossrefs
Programs
-
GAP
a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
-
Magma
[0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
-
Mathematica
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *) nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
-
PARI
m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
-
Sage
def A058798(n): if n < 3: return n return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n) [simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
Formula
a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*binomial(n-k-1,k)*(n-k)!/(k+1)!. - Peter Bala, Aug 01 2013
a(n) = Pi*(BesselY(1, 2)*BesselJ(n+1, 2) - BesselJ(1,2)* BesselY(n+1,2)). See the Abramowitz-Stegun reference given under A103921, p. 361 eq. 9.1.27 (first line with Y, J and z=2) and p. 360, eq. 9.1.16 (Wronskian). - Wolfdieter Lang, Mar 05 2013
Limit_{n->oo} a(n)/n! = BesselJ(1,2) = 0.576724807756873... See a comment on asymptotics under A084950.
a(n) = n!*hypergeometric([1/2-n/2, 1-n/2], [2, 1-n, -n], -4) for n >= 2. - Peter Luschny, Sep 10 2014
Extensions
New description from Amarnath Murthy, Aug 17 2002
Comments