A094373 Expansion of (1-x-x^2)/((1-x)*(1-2*x)).
1, 2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
Offset: 0
Examples
G.f. = 1 + 2*x + 3*x^2 + 5*x^3 + 9*x^4 + 17*x^5 + 33*x^6 + 65*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein, Complete Sequence.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
GAP
a:=[2,3];; for n in [3..40] do a[n]:=3*a[n-1]-2*a[n-2]; od; Concatenation([1], a); # G. C. Greubel, Nov 06 2019
-
Magma
[(2^n-0^n)/2+1: n in [0..40]]; // Vincenzo Librandi, Jun 10 2011
-
Magma
R
:=PowerSeriesRing(Integers(), 35); Coefficients(R!( (1-x-x^2)/((1-x)*(1-2*x)))); // Marius A. Burtea, Oct 25 2019 -
Maple
1, seq((2^n - 0^n)/2 +1, n=1..40); # G. C. Greubel, Nov 06 2019
-
Mathematica
CoefficientList[Series[(1-x-x^2)/((1-x)*(1-2*x)), {x, 0, 40}], x] (* or *) Join[{1}, LinearRecurrence[{3, -2}, {2, 3}, 40]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *) a[ n_]:= If[n<0, 0, 1 + Quotient[2^n, 2]]; (* Michael Somos, May 26 2014 *) a[ n_]:= SeriesCoefficient[(1-x-x^2)/((1-x)(1-2x)), {x, 0, n}]; (* Michael Somos, May 26 2014 *) LinearRecurrence[{3,-2},{1,2,3},40] (* Harvey P. Dale, Aug 09 2015 *)
-
PARI
a(n)=2^n\2+1 \\ Charles R Greathouse IV, Apr 05 2013
-
PARI
Vec((1-x-x^2)/((1-x)*(1-2*x))+O(x^40)) \\ Charles R Greathouse IV, Apr 05 2013
-
Sage
[(2^n - 0^n)/2 + 1 for n in (0..40)] # G. C. Greubel, Nov 06 2019
Formula
a(n) = (2^n - 0^n)/2 + 1.
a(n) = 3*a(n-1) - 2*a(n-2).
a(2*n) = 2*a(2*n-1) - 1, n>0.
Row sums of triangle A135225. - Gary W. Adamson, Nov 23 2007
a(n) = A131577(n) + 1. - Paul Curtz, Aug 07 2008
a(n) = 2*a(n-1) - 1 for n>1, a(0)=1, a(1)=2. - Philippe Deléham, Sep 25 2009
E.g.f.: exp(x)*(1 + sinh(x)). - Arkadiusz Wesolowski, Aug 13 2012
G.f.: G(0), where G(k)= 1 + 2^k*x/(1 - x/(x + 2^k*x/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 26 2013
a(n) = 2^(n-1) +1 = A000051(n-1) for n>0. - M. F. Hasler, Sep 22 2013
Comments