cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A045637 Primes of the form p^2 + 4, where p is prime.

Original entry on oeis.org

13, 29, 53, 173, 293, 1373, 2213, 4493, 5333, 9413, 10613, 18773, 26573, 27893, 37253, 54293, 76733, 85853, 94253, 97973, 100493, 120413, 139133, 214373, 237173, 253013, 299213, 332933, 351653, 368453, 375773, 458333, 552053, 619373
Offset: 1

Views

Author

Keywords

Comments

These are the only primes that are the sum of two primes squared. 11 = 3^2 + 2 is the only prime of the form p^2 + 2 because all primes greater than 3 can be written as p=6n-1 or p=6n+1, which allows p^2+2 to be factored. - T. D. Noe, May 18 2007
Infinite under the Bunyakovsky conjecture. - Charles R Greathouse IV, Jul 04 2011
All terms > 29 are congruent to 53 mod 120. - Zak Seidov, Nov 06 2013

Examples

			29 belongs to the sequence because it equals 5^2 + 4.
		

Crossrefs

The corresponding primes p are in A062324.
Subsequence of A005473 (and thus A185086).

Programs

  • Mathematica
    Select[Prime[ # ]^2+4&/@Range[140], PrimeQ]
  • PARI
    forprime(p=2,1e4,if(isprime(t=p^2+4),print1(t","))) \\ Charles R Greathouse IV, Jul 04 2011

Formula

a(n) = A062324(n)^2 + 4. - Zak Seidov, Nov 06 2013

Extensions

Edited by Dean Hickerson, Dec 10 2002

A158361 Primes p with property that Q = p^4 + 2^4 is prime.

Original entry on oeis.org

3, 5, 7, 11, 17, 19, 23, 37, 41, 59, 61, 71, 79, 97, 131, 139, 179, 223, 227, 229, 241, 283, 313, 317, 359, 367, 379, 383, 389, 439, 449, 461, 487, 503, 521, 569, 593, 617, 619, 631, 661, 683, 709, 733, 811, 821, 853, 911, 977, 1049, 1061, 1063, 1069, 1091, 1093, 1117
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 17 2009

Keywords

Comments

Q is always congruent to 1 (mod 4).
Q is divisible by 17 if p is congruent to 1, 4, 13, or 16 (mod 17).
It is conjectured that sequence a(n) is infinite.
Q is in A094479. - Zak Seidov, Jul 08 2020

Examples

			3 is in the sequence since for p=3: p^4+2^4 = 3^4+16 = 97 is prime.
29 is not in the sequence since 29^4+2^4 = 707297 = 73 x 9689 is not prime.
		

References

  • Leonard E. Dickson, History of the Theory of numbers, vol. I, Dover Publications 2005
  • Richard Guy, "Unsolved Problems in Number Theory"

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | IsPrime(p^4+16)]; // Vincenzo Librandi, Jun 18 2014
  • Mathematica
    Select[Range[10^3], PrimeQ[#] && PrimeQ[#^4 + 16] &] (* Vincenzo Librandi, Jun 18 2014 *)
    Select[Prime[Range[200]],PrimeQ[#^4+16]&] (* Harvey P. Dale, Jun 23 2014 *)
  • PARI
    isA158361(n) = isprime(n) && isprime(n^4+16)
    

Extensions

Corrected and edited by Michael B. Porter, Dec 17 2009

A193411 Primes which are sums of two or more distinct 4th powers of primes.

Original entry on oeis.org

97, 641, 2417, 14657, 17123, 17683, 43283, 46309, 83537, 112163, 126739, 129221, 129749, 130337, 145043, 145603, 173539, 176021, 176549, 214483, 216259, 229189, 242419, 243109, 244901, 257141, 279857, 280547, 294563, 295123, 297589, 310819, 325541, 365779
Offset: 1

Views

Author

Jonathan Vos Post, Jul 25 2011

Keywords

Comments

Primes in A130833. Primes which are sums of exactly two distinct 4th powers of primes must be in A094479 primes of the form p^4 + 16 where p is also a prime.
The first term that arises in more than one way is 6625607 = 2^4+5^4+7^4+11^4+17^4+23^4+41^4+43^4 = 2^4+5^4+7^4+13^4+17^4+29^4+31^4+47^4. - Robert Israel, Apr 27 2020

Examples

			a(5) = 17123 = 3^4 + 7^4 + 11^4.
		

Crossrefs

Programs

  • Maple
    N:= 5*10^5: # for all terms <= N
    S1:= {}:
    S2:= {}:
    p:= 1:
    R:= {}:
    do
      p:= nextprime(p);
      if p^4 > N then break fi;
      s:= p^4;
      nS2:= select(`<=`,map(`+`,S1 union S2, s), N);
      S2:= S2 union nS2;
      S1:= S1 union {s};
      R:= R union select(isprime, nS2);
    od:
    sort(convert(R,list)); # Robert Israel, Apr 27 2020
  • Mathematica
    nn = 9; Select[Sort[Table[Dot[IntegerDigits[i, 2, nn], Prime[Range[nn]]^4], {i, 2^nn-1}]], # < Prime[nn-1]^4 + Prime[nn]^4 && PrimeQ[#] &] (* T. D. Noe, Jul 27 2011 *)
  • PARI
    list(lim)=my(v=List(), t1, t2, t3, t4, t5, t6, t7); forprime(p=2, (lim-16)^(1/4), forprime(q=2, min(p-1, (lim-p^4)^(1/4)), t1=p^4+q^4; if(isprime(t1), listput(v, t1)); forprime(r=2, min(q-1, (lim-t1)^(1/4)), t2=t1+r^4; if(isprime(t2), listput(v, t2)); forprime(s=2, min(r-1, (lim-t2)^(1/4)), t3=t2+s^4; if(isprime(t3), listput(v, t3)); forprime(t=2, min(s-1, (lim-t3)^(1/4)), t4=t3+t^4; if(isprime(t4), listput(v, t4)); forprime(u=2, min(t-1, (lim-t4)^(1/4)), t5=t4+u^4; if(isprime(t5), listput(v, t5)); forprime(w=2, min(u-1, (lim-t5)^(1/4)), t6=t5+w^4; if(isprime(t6), listput(v, t6)); forprime(x=2, min(w-1, (lim-t6)^(1/4)), t7=t6+x^4; if(isprime(t7), listput(v, t7)); if(x>2&&t7+16<=lim&&isprime(t7+16), listput(v, t7+16)))))))))); vecsort(Vec(v), , 8);
    list(4044955) \\ Charles R Greathouse IV, Jul 27 2011

Extensions

a(7)-a(33) from Charles R Greathouse IV, Jul 25 2011

A244344 Numbers such that the largest prime factor equals the sum of the 4th power of the other prime factors.

Original entry on oeis.org

582, 1164, 1746, 2328, 3492, 4656, 5238, 6410, 6984, 9312, 10476, 12820, 13968, 15714, 18624, 20952, 25640, 27936, 31428, 32050, 33838, 37248, 41904, 47142, 51280, 55872, 56454, 62856, 64100, 67676, 74496, 83808, 94284, 102560, 111744, 112908, 125712, 128200
Offset: 1

Views

Author

Michel Lagneau, Jun 26 2014

Keywords

Comments

Observation: it seems that the prime divisors of a majority of numbers n are of the form {2, p, q} with q = 2^4 + p^4, but there exists more rarely odd numbers with more prime divisors (example from Michel Marcus: 3955413 = 3*7*11*17123).

Examples

			582 is in the sequence because the prime divisors of 582 are 2, 3 and 97 => 2^4 + 3^4 = 97.
		

Crossrefs

Programs

  • Mathematica
    fpdQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]},Max[f]-Total[Most[f]^4]==0];Union[Select[Range[2,5*10^5],fpdQ]]

A287927 Numbers k such that A287925(k) is a prime.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 12, 13, 17, 18, 20, 22, 25, 32, 34, 41, 48, 49, 50, 53, 61, 65, 66, 72, 73, 75, 76, 77, 85, 87, 89, 93, 96, 98, 104, 108, 113, 114, 115, 121, 124, 127, 130, 141, 142, 147, 156, 165, 176, 178, 179, 180, 182, 183, 187, 196, 197, 208, 214
Offset: 1

Views

Author

XU Pingya, Jun 03 2017

Keywords

Comments

Corresponding primes are in A094479.

Crossrefs

Programs

  • Mathematica
    Select[Table[n, {n, 215}], PrimeQ[Prime[#]^4 + 2^4] &]
Showing 1-5 of 5 results.