A103904
a(n) = n*(n-1)/2 * 2^(n*(n-1)/2).
Original entry on oeis.org
0, 2, 24, 384, 10240, 491520, 44040192, 7516192768, 2473901162496, 1583296743997440, 1981583836043018240, 4869940435459321626624, 23574053482485268906770432, 225305087149939210031640608768
Offset: 1
- M. Ciucu, Enumeration of perfect matchings in graphs with reflective symmetry, J. Combin. Theory Ser. A 77 (1997), no. 1, 67-97, doi:10.1006/jcta.1996.2725.
- N. Elkies, G. Kuperberg, M. Larsen and J. Propp, Alternating sign matrices and domino tilings, Journal of Algebraic Combinatorics 1 (1992), 111-132 (Part I), 219-234 (Part II); arXiv:math/9201305 [math.CO], 1992.
- H. Helfgott and I. M. Gessel, Enumeration of tilings of diamonds and hexagons with defects, arXiv:math/9810143 [math.CO], 1998.
- C. Krattenthaler, Schur function identities and the number of perfect matchings of Aztec holey rectangles, arXiv:math/9712204 [math.CO], 1997.
- Mathematics Stack Exchange, Mistake in OEIS A103904?, 2021.
Name replaced by a formula, a(1) changed from 1 to 0, and entry edited by
Andrey Zabolotskiy, Jun 05 2022
A219765
Triangle of coefficients of a polynomial sequence related to the coloring of labeled graphs.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 5, -12, 8, 0, -79, 208, -192, 64, 0, 3377, -9520, 10240, -5120, 1024, 0, -362431, 1079744, -1282560, 778240, -245760, 32768, 0, 93473345, -291615296, 372893696, -255754240, 100925440, -22020096, 2097152, 0, -56272471039, 182582658048, -247557029888, 185511968768, -84263567360, 23488102400, -3758096384, 268435456
Offset: 0
Triangle begins:
n\k.|..0.....1......2.......3......4.......5
= = = = = = = = = = = = = = = = = = = = = = =
.0..|..1
.1..|..0.....1
.2..|..0....-1......2
.3..|..0.....5....-12.......8
.4..|..0...-79....208....-192.....64
.5..|..0..3377..-9520...10240..-5120....1024
...
Row 3 = [5, -12, 8]: There are 4 unlabeled graphs on 3 vertices, namely
(a) o o o (b) o o----o (c) o----o----o
(d) 0
/ \
0---0
with chromatic polynomials x^3, x^2*(x-1), x*(x-1)^2 and (x-1)^3 - (x-1), respectively. Allowing for labeling, there is 1 labeled graph of type (a), 3 labeled graphs of type (b), 3 labeled graphs of type (c) and 1 labeled graph of type (d). Thus the sum of the chromatic polynomials over all labeled graphs on 3 nodes is x^3 + 3*x^2*(x-1) + 3*x*(x-1)^2 + (x-1)^3 - (x-1) = 5*x - 12*x^2 + 8*x^3.
Row 3 of A058843 is [1,12,8]. Thus R(3,x) = x + 12*x*(x-1) + 8*x*(x-1)*(x-2) = 5*x - 12*x^2 + 8*x^3.
- Alois P. Heinz, Rows n = 0..77, flattened
- R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
- R. P. Stanley, Exponential structures
- R. P. Stanley, Acyclic orientation of graphs, Discrete Math. 5 (1973), 171-178.
- Wikipedia, Graph coloring
-
R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
end:
T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(R(n)):
seq(T(n), n=0..10); # Alois P. Heinz, May 16 2024
-
r[0] = 1; r[1] = x; r[n_] := r[n] = x*Sum[ Binomial[n-1, k]*2^(k*(n-k))*(r[k] /. x -> x-1), {k, 0, n-1}]; row[n_] := CoefficientList[ r[n], x]; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 17 2013 *)
A277219
Triangle read by rows: T(n,k) is the number of independent sets of size k over all simple labeled graphs on n nodes, n>=0, 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 4, 1, 8, 24, 12, 1, 64, 256, 192, 32, 1, 1024, 5120, 5120, 1280, 80, 1, 32768, 196608, 245760, 81920, 7680, 192, 1, 2097152, 14680064, 22020096, 9175040, 1146880, 43008, 448, 1, 268435456, 2147483648, 3758096384, 1879048192, 293601280, 14680064, 229376, 1024, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 4, 1;
8, 24, 12, 1;
64, 256, 192, 32, 1;
1024, 5120, 5120, 1280, 80, 1;
32768, 196608, 245760, 81920, 7680, 192, 1;
...
-
seq(seq(2^(n*(n-1)/2-k*(k-1)/2)*binomial(n,k),k=0..n),n=0..10); # Robert Israel, Oct 06 2016
-
Table[Table[2^Binomial[n, 2] Binomial[n, k]/2^Binomial[k, 2], {k, 0, n}], {n,0, 7}] // Grid
A094602
Total number of edges in all connected unlabeled graphs on n nodes.
Original entry on oeis.org
0, 1, 5, 25, 130, 951, 9552, 160220, 4756703, 264964172, 27746801125, 5419696866001, 1964101824992259, 1319988856541150115, 1648566523004692022634, 3838409698542815296758222, 16719797018733808721401666187, 136732968429033400292302529059213
Offset: 1
-
\\ See A054923 for G, InvEulerMT.
a(n)={subst(deriv(InvEulerMT(vector(n, k, G(k,y)))[n]), y, 1)} \\ Andrew Howroyd, Feb 01 2020
A094594
Total number of edges in all connected labeled graphs on n nodes.
Original entry on oeis.org
0, 1, 9, 144, 4140, 214200, 20264832, 3580049088, 1202974894656, 779257681804800, 982078160760512640, 2423077679970846226944, 11755368773275419420291072, 112487517660848696830655493120
Offset: 1
-
a[1]:=0: for n from 1 to 16 do a[n]:= binomial(n,2)*2^(binomial(n,2)-1)-sum(binomial(n,k)*2^binomial(n-k,2)*a[k],k=1..n-1) od: seq(a[n],n=1..16); # Emeric Deutsch, Dec 18 2004
-
nn=14;f[x_,y_]:=Sum[(1+y)^Binomial[n,2]x^n/n!,{n,0,nn}];Drop[Range[0,nn]!CoefficientList[Series[D[Log[f[x,y]],y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Sep 04 2013 *)
A285529
Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1.
Original entry on oeis.org
1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216
Offset: 1
1,
2, 2,
6, 12, 6,
32, 96, 96, 32,
320, 1280, 1920, 1280, 320,
...
-
nn = 9; Map[Select[#, # > 0 &] &,
Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid
Showing 1-6 of 6 results.
Comments