cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A103904 a(n) = n*(n-1)/2 * 2^(n*(n-1)/2).

Original entry on oeis.org

0, 2, 24, 384, 10240, 491520, 44040192, 7516192768, 2473901162496, 1583296743997440, 1981583836043018240, 4869940435459321626624, 23574053482485268906770432, 225305087149939210031640608768
Offset: 1

Views

Author

Ralf Stephan, Feb 21 2005

Keywords

Comments

a(n) is the number of birooted graphs on n labeled nodes. - Andrew Howroyd, Nov 23 2020
Old (incorrect) name was: "Number of perfect matchings of an n X (n+1) Aztec rectangle with the third vertex in the topmost row removed". See Mathematics Stack Exchange for the discussion. - Andrey Zabolotskiy, Jun 05 2022

Crossrefs

Programs

  • PARI
    a(n)={binomial(n,2)*2^binomial(n,2)} \\ Andrew Howroyd, Nov 23 2020

Formula

a(n) = A000217(n-1) * A006125(n).
a(n) = 2*A095351(n). - Andrew Howroyd, Nov 23 2020
a(n) = A036289(n*(n-1)/2). - Michael Somos, Feb 28 2021

Extensions

Name replaced by a formula, a(1) changed from 1 to 0, and entry edited by Andrey Zabolotskiy, Jun 05 2022

A219765 Triangle of coefficients of a polynomial sequence related to the coloring of labeled graphs.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 5, -12, 8, 0, -79, 208, -192, 64, 0, 3377, -9520, 10240, -5120, 1024, 0, -362431, 1079744, -1282560, 778240, -245760, 32768, 0, 93473345, -291615296, 372893696, -255754240, 100925440, -22020096, 2097152, 0, -56272471039, 182582658048, -247557029888, 185511968768, -84263567360, 23488102400, -3758096384, 268435456
Offset: 0

Views

Author

Peter Bala, Apr 16 2013

Keywords

Comments

A simple graph G is a k-colorable graph if it is possible to assign one of k' <= k colors to each vertex of G so that no two adjacent vertices receive the same color. Such an assignment of colors is called a k-coloring function for the graph. The chromatic polynomial P(G,k) of a simple graph G gives the number of different k-colorings functions of the graph as a function of k. P(G,k) is a polynomial function of k.
The row polynomials R(n,x) of this triangle are defined to be the sum of the chromatic polynomials of all labeled simple graphs on n vertices: R(n,x) = sum {labeled graphs G on n nodes} P(G,x). An example is given below.

Examples

			Triangle begins:
  n\k.|..0.....1......2.......3......4.......5
  = = = = = = = = = = = = = = = = = = = = = = =
  .0..|..1
  .1..|..0.....1
  .2..|..0....-1......2
  .3..|..0.....5....-12.......8
  .4..|..0...-79....208....-192.....64
  .5..|..0..3377..-9520...10240..-5120....1024
  ...
Row 3 = [5, -12, 8]: There are 4 unlabeled graphs on 3 vertices, namely
(a)  o    o    o    (b)  o    o----o    (c)  o----o----o
(d)   0
     / \
    0---0
with chromatic polynomials x^3, x^2*(x-1), x*(x-1)^2 and (x-1)^3 - (x-1), respectively. Allowing for labeling, there is 1 labeled graph of type (a), 3 labeled graphs of type (b), 3 labeled graphs of type (c) and 1 labeled graph of type (d). Thus the sum of the chromatic polynomials over all labeled graphs on 3 nodes is x^3 + 3*x^2*(x-1) + 3*x*(x-1)^2  + (x-1)^3 - (x-1) = 5*x - 12*x^2 + 8*x^3.
Row 3 of A058843 is [1,12,8]. Thus R(3,x) = x + 12*x*(x-1) + 8*x*(x-1)*(x-2) = 5*x - 12*x^2 + 8*x^3.
		

Crossrefs

Cf. A003024 (alt. row sums), A006125 (main diagonal), A095351 (main subdiagonal), A134531 (column 1), A058843, A322280.

Programs

  • Maple
    R:= proc(n) option remember; `if`(n=0, 1, expand(x*add(
          binomial(n-1, k)*2^(k*(n-k))*subs(x=x-1, R(k)), k=0..n-1)))
        end:
    T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(R(n)):
    seq(T(n), n=0..10);  # Alois P. Heinz, May 16 2024
  • Mathematica
    r[0] = 1; r[1] = x; r[n_] := r[n] = x*Sum[ Binomial[n-1, k]*2^(k*(n-k))*(r[k] /. x -> x-1), {k, 0, n-1}]; row[n_] := CoefficientList[ r[n], x]; Table[ row[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 17 2013 *)

Formula

Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function for the triangle is E(z)^x = Sum_{n >= 0} R(n,x)*z^n/(n!*2^C(n,2)) = 1 + x*z + (-x + 2*x^2)*z^2/(2!*2) + (5*x - 12*x^2 + 8*x^3)*z^3/(3!*2^3) + ....
The row polynomials satisfy the recurrence equation: R(0,x) = 1 and
R(n+1,x) = x*Sum_{k = 0..n} binomial(n,k)*2^(k*(n+1-k))*R(k,x-1).
In terms of the basis of falling factorial polynomials we have, for n >= 1, R(n,x) = Sum_{k = 1..n} A058843(n,k)*x*(x-1)*...*(x-k+1).
The polynomials R(n,x)/2^comb(n,2) form a sequence of binomial type (see Stanley). Setting D = d/dx, the associated delta operator begins D + D^2/(2!*2) + D^3/(3!*2^3) - D^4/(4!*2^4) + 23*D^5/(5!*2^5) + 559*D^6/(6!*2^6) - ... obtained by series reversion of the formal series D - D^2/(2!*2) + 5*D^3/(3!*2^3) - 79*D^4/(4!*2^4) + 3377*D^5/(5!*2^5) - ... coming from column 1 of the triangle.
Alternating row sums A003024. Column 1 = A134531. Main diagonal A006125. Main subdiagonal (-1)*A095351.
The row polynomials evaluated at k is A322280(n,k). - Geoffrey Critzer, Mar 02 2024
Let k>=1 and let D be a directed acyclic graph with vertices labeled on [n]. Then (-1)^n*R(n,-k) is the number of maps C:[n]->[k] such that for all vertices i,j in [n], if i is directed to j in D then C(i)>=C(j). Cf A003024 (k=1), A339934 (k=2). - Geoffrey Critzer, May 15 2024

A277219 Triangle read by rows: T(n,k) is the number of independent sets of size k over all simple labeled graphs on n nodes, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 4, 1, 8, 24, 12, 1, 64, 256, 192, 32, 1, 1024, 5120, 5120, 1280, 80, 1, 32768, 196608, 245760, 81920, 7680, 192, 1, 2097152, 14680064, 22020096, 9175040, 1146880, 43008, 448, 1, 268435456, 2147483648, 3758096384, 1879048192, 293601280, 14680064, 229376, 1024, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 05 2016

Keywords

Comments

Equivalently, T(n,k) is the number of size k cliques over all simple labeled graphs on n vertices.

Examples

			Triangle begins:
1;
1,     1;
2,     4,      1;
8,     24,     12,     1;
64,    256,    192,    32,    1;
1024,  5120,   5120,   1280,  80,   1;
32768, 196608, 245760, 81920, 7680, 192, 1;
...
		

Crossrefs

Cf. A079491 (row sums), A006125 (column k=0), A095340 (column k=1), A095351 (column k = 2).

Programs

  • Maple
    seq(seq(2^(n*(n-1)/2-k*(k-1)/2)*binomial(n,k),k=0..n),n=0..10); # Robert Israel, Oct 06 2016
  • Mathematica
    Table[Table[2^Binomial[n, 2] Binomial[n, k]/2^Binomial[k, 2], {k, 0, n}], {n,0, 7}] // Grid

Formula

T(n,k) = 2^binomial(n,2)*binomial(n,k)/2^binomial(k,2).

A094602 Total number of edges in all connected unlabeled graphs on n nodes.

Original entry on oeis.org

0, 1, 5, 25, 130, 951, 9552, 160220, 4756703, 264964172, 27746801125, 5419696866001, 1964101824992259, 1319988856541150115, 1648566523004692022634, 3838409698542815296758222, 16719797018733808721401666187, 136732968429033400292302529059213
Offset: 1

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Crossrefs

Programs

  • PARI
    \\ See A054923 for G, InvEulerMT.
    a(n)={subst(deriv(InvEulerMT(vector(n, k, G(k,y)))[n]), y, 1)} \\ Andrew Howroyd, Feb 01 2020

Formula

a(n) = Sum_{k=1..binomial(n,2)} k*A054924(n, k). - Andrew Howroyd, Feb 01 2020

Extensions

Terms a(17) and beyond from Andrew Howroyd, Feb 01 2020

A094594 Total number of edges in all connected labeled graphs on n nodes.

Original entry on oeis.org

0, 1, 9, 144, 4140, 214200, 20264832, 3580049088, 1202974894656, 779257681804800, 982078160760512640, 2423077679970846226944, 11755368773275419420291072, 112487517660848696830655493120
Offset: 1

Views

Author

Vladeta Jovovic, Jun 06 2004

Keywords

Programs

  • Maple
    a[1]:=0: for n from 1 to 16 do a[n]:= binomial(n,2)*2^(binomial(n,2)-1)-sum(binomial(n,k)*2^binomial(n-k,2)*a[k],k=1..n-1) od: seq(a[n],n=1..16); # Emeric Deutsch, Dec 18 2004
  • Mathematica
    nn=14;f[x_,y_]:=Sum[(1+y)^Binomial[n,2]x^n/n!,{n,0,nn}];Drop[Range[0,nn]!CoefficientList[Series[D[Log[f[x,y]],y]/.y->1,{x,0,nn}],x],1] (* Geoffrey Critzer, Sep 04 2013 *)

Formula

E.g.f.: A(x)/B(x), where A(x) is e.g.f. of A095351 and B(x) is e.g.f. of A006125. recurrence: a(n) = binomial(n, 2)*2^(binomial(n, 2) - 1) - Sum_{k=1..n-1} binomial(n, k)*2^binomial(n-k, 2)*a(k).
a(n) = Sum_{k=0..binomial(n,2)} A062734(n,k)*k. - Geoffrey Critzer, Sep 04 2013

Extensions

More terms from Emeric Deutsch, Dec 18 2004

A285529 Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216
Offset: 1

Views

Author

Geoffrey Critzer, Apr 20 2017

Keywords

Examples

			1,
2,   2,
6,   12,   6,
32,  96,   96,   32,
320, 1280, 1920, 1280, 320,
...
		

Crossrefs

Row sums give A095340.
Columns for k=0-3: A123903, A095338, A038094, A038096.

Programs

  • Mathematica
    nn = 9; Map[Select[#, # > 0 &] &,
      Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid

Formula

E.g.f. for column k: x * Sum_{n>=0} binomial(n,k)*2^binomial(n,2)*x^n/n!.
Sum_{k=1..n-1} T(n,k)*k/2 = A095351(n).
T(n,k) = n*binomial(n-1,k)*2^binomial(n-1,2). - Alois P. Heinz, Apr 21 2017
Showing 1-6 of 6 results.