A096430 Numerator of (9*(n^4 - 2*n^3 + 2*n^2 - n) + 2)/(2*(2*n-1)).
1, 28, 38, 703, 1891, 4186, 8128, 2873, 23653, 36856, 54946, 79003, 22043, 149878, 199396, 260281, 334153, 84548, 527878, 651511, 795691, 962578, 230888, 1373653, 1622701, 1904176, 2220778, 515063, 2970703, 3409966, 3896236
Offset: 1
Examples
1, 28/3, 38, 703/7, 1891/9, 4186/11, ... = A096430/A096431.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Magic Hexagon
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,5,0,0,0,0,-10,0,0,0,0,10,0,0,0,0,-5,0,0,0,0,1).
Programs
-
Magma
A096430:= func< n | Numerator((9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1))) >; [A096430(n): n in [1..50]]; // G. C. Greubel, Oct 14 2024
-
Maple
A096430:=n->numer((9*(n^4 - 2*n^3 + 2*n^2 - n) + 2)/(2*(2*n-1))): seq(A096430(n), n=1..50); # Wesley Ivan Hurt, Jan 21 2017
-
Mathematica
Table[Numerator[(9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1))], {n,50}] (* G. C. Greubel, Oct 14 2024 *)
-
SageMath
def A096430(n): return numerator((9*n*(n^3-2*n^2+2*n-1)+2)/(2*(2*n-1))) [A096430(n) for n in range(1,51)] # G. C. Greubel, Oct 14 2024
Comments