Original entry on oeis.org
1, 2, 17, 205, 3876, 99585, 3313117, 138046940, 6974868139, 419104459913, 29405917751526, 2376498296500063, 218615700758838253, 22667167720595002186, 2626657814273218158997, 337692419653329329932633, 47859496337287704749354668
Offset: 0
-
# Maple program 1:
Digits:=48;
a:= proc(n) round(evalf(sum(p^(2*n + 1)*hypergeom([-n, -n - 1/2],
[ ], -2/p^2)/p!, p = 1 .. infinity)/exp(1)));
end:
seq(a(n),n=0..16);
# Alternative formula in terms of generalized Laguerre
# polynomials LaguerreL(n,b,z):
# Maple program 2:
Digits:=48;
a:= proc(n) round(evalf(sum(factor(expand(p^(2*n+1)*n!*
(-2/p^2)^n*LaguerreL(n,1/2,p^2/2)))/p!,p=1..infinity)/exp(1)));
end:
seq(a(n),n=0..16);
# third Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(
j=2, 0, b(n-j)*binomial(n-1, j-1)), j=1..n))
end:
a:= n-> b(2*n+1):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2023
-
b[n_] := b[n] = If[n == 0, 1,
Sum[If[j == 2, 0, b[n-j]*Binomial[n-1, j-1]], {j, 1, n}]];
a[n_] := b[2n+1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 03 2024, after Alois P. Heinz *)
-
my(N=44,x='x+O('x^N)); v=Vec(serlaplace(exp(exp(x)-1-x^2/2))); vector(#v\2,n,v[2*n]) \\ Joerg Arndt, Jul 26 2023
A111723
Number of partitions of an n-set with an odd number of blocks of size 1.
Original entry on oeis.org
1, 0, 4, 4, 31, 86, 449, 1968, 10420, 56582, 333235, 2069772, 13606113, 94065232, 682242552, 5175100432, 40954340995, 337362555010, 2886922399649, 25616738519384, 235313456176512, 2234350827008170, 21899832049913999, 221292603495494488, 2302631998398438321
Offset: 1
-
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
`if`(j=1, 1-t, t))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..30); # Alois P. Heinz, May 10 2016
-
Rest[ Range[0, 23]! CoefficientList[ Series[ Sinh[x]Exp[Exp[x] - 1 - x], {x, 0, 23}], x]] (* Robert G. Wilson v *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, t):
return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1) for j in range(1, n + 1))
def a(n):
return b(n, 0)
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 10 2017
A111724
Number of partitions of an n-set with an even number of blocks of size 1.
Original entry on oeis.org
0, 2, 1, 11, 21, 117, 428, 2172, 10727, 59393, 345335, 2143825, 14038324, 96834090, 700715993, 5305041715, 41910528809, 344714251149, 2945819805408, 26107419715988, 239556359980239, 2272364911439153, 22252173805170347, 224666265799310801, 2335958333831561032
Offset: 1
-
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
`if`(j=1, 1-t, t))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=1..30); # Alois P. Heinz, May 10 2016
-
Rest[ Range[0, 24]! CoefficientList[ Series[ Cosh[x]Exp[Exp[x] - 1 - x], {x, 0, 23}], x]] (* Robert G. Wilson v *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1) for j in range(1, n + 1))
def a(n): return b(n, 1)
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 10 2017
A113235
Number of partitions of {1,..,n} into any number of lists of size not equal to 2, where a list means an ordered subset, cf. A000262.
Original entry on oeis.org
1, 1, 1, 7, 49, 301, 2281, 21211, 220417, 2528569, 32014801, 442974511, 6638604721, 107089487077, 1849731389689, 34051409587651, 665366551059841, 13751213558077681, 299644435399909537, 6864906328749052759, 164941239260973870001, 4146673091958686331421
Offset: 0
This sequence,
A113236 and
A113237 all describe the same type of mathematical structure: lists with some restrictions.
-
I:=[1, 1, 7, 49]; [1] cat [n le 4 select I[n] else (2*n-1)*Self(n -1) - (n-1)*n*Self(n-2) +4*(n-1)*(n-2)*Self(n-3) -2*(n-1)*(n-2)*(n-3)* Self(n-4): n in [1..30]]; // G. C. Greubel, May 16 2018
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-j)*binomial(n-1, j-1)*j!, j=[1, $3..n]))
end:
seq(a(n), n=0..30); # Alois P. Heinz, May 10 2016
-
f[n_] := n!*Sum[(-1)^k*LaguerreL[n - 2*k, -1, -1]/k!, {k, 0, Floor[n/2]}]; Table[ f[n], {n, 0, 19}]
Range[0, 19]!*CoefficientList[ Series[ Exp[x*(1 - x + x^2)/(1 - x)], {x, 0, 19}], x] (* Robert G. Wilson v, Oct 21 2005 *)
-
m=30; v=concat([1,1,7,49], vector(m-4)); for(n=5, m, v[n]=(2*n-1)*v[n-1]-(n-1)*n*v[n-2]+4*(n-1)*(n-2)*v[n-3]-2*(n-1)*(n-2)*(n-3)*v[n -4]); concat([1], v) \\ G. C. Greubel, May 16 2018
-
x='x+O('x^99); Vec(serlaplace(exp(x*(1-x+x^2)/(1-x)))) \\ Altug Alkan, May 17 2018
A337058
E.g.f.: 1 / (2 + x^2/2 - exp(x)).
Original entry on oeis.org
1, 1, 2, 7, 33, 191, 1323, 10711, 99151, 1032385, 11943003, 151979213, 2109829857, 31730171539, 513903517585, 8917723105003, 165065061436755, 3246274767649637, 67598797715175999, 1485845872704318265, 34378343609138619685, 835190283258080561671
Offset: 0
-
nmax = 21; CoefficientList[Series[1/(2 + x^2/2 - Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = n a[n - 1] + Sum[Binomial[n, k] a[n - k], {k, 3, n}]; Table[a[n], {n, 0, 21}]
A343664
Number of partitions of an n-set without blocks of size 4.
Original entry on oeis.org
1, 1, 2, 5, 14, 47, 173, 702, 3125, 14910, 76495, 418035, 2418397, 14791597, 95093612, 641094695, 4521228732, 33250447919, 254585084539, 2024995604762, 16702070759557, 142642458681486, 1259387604241013, 11479967000116911, 107910143688962037, 1044735841257587203, 10407104137208385924
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=4, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..26); # Alois P. Heinz, Apr 25 2021
-
nmax = 26; CoefficientList[Series[Exp[Exp[x] - 1 - x^4/4!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 4 k]/((n - 4 k)! k! (4!)^k), {k, 0, Floor[n/4]}], {n, 0, 26}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 4, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 26}]
A343665
Number of partitions of an n-set without blocks of size 5.
Original entry on oeis.org
1, 1, 2, 5, 15, 51, 197, 835, 3860, 19257, 102997, 586170, 3535645, 22496437, 150454918, 1054235150, 7718958995, 58905868192, 467530598983, 3851775136517, 32881385742460, 290387471713872, 2649226725182823, 24934118754400767, 241809265181914545, 2413608066257526577
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=5, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^5/5!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 5 k]/((n - 5 k)! k! (5!)^k), {k, 0, Floor[n/5]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 5, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343666
Number of partitions of an n-set without blocks of size 6.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 202, 870, 4084, 20727, 112825, 654546, 4026487, 26145511, 178550986, 1278168860, 9564026947, 74615547996, 605593775899, 5103054929621, 44564754448972, 402677613100491, 3759094788129312, 36205919126040190, 359340174509911325, 3670825700549853053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=6, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^6/6!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 6 k]/((n - 6 k)! k! (6!)^k), {k, 0, Floor[n/6]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 6, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343667
Number of partitions of an n-set without blocks of size 7.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 876, 4132, 21075, 115375, 673620, 4172413, 27296089, 187891174, 1356343385, 10238632307, 80615222404, 660560758879, 5621465069117, 49594663447612, 452846969975391, 4273130715906123, 41612346388251187, 417668648929556073, 4315893703814296053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=7, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^7/7!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 7 k]/((n - 7 k)! k! (7!)^k), {k, 0, Floor[n/7]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 7, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
A343668
Number of partitions of an n-set without blocks of size 8.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4139, 21138, 115885, 677745, 4206172, 27577513, 190289713, 1377315050, 10426866782, 82350895629, 677003941219, 5781485704892, 51193839084907, 469251258854001, 4445769329586348, 43475305461354931, 438270620701587657, 4549243731200717053
Offset: 0
-
a:= proc(n) option remember; `if`(n=0, 1, add(
`if`(j=8, 0, a(n-j)*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Apr 25 2021
-
nmax = 25; CoefficientList[Series[Exp[Exp[x] - 1 - x^8/8!], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Sum[(-1)^k BellB[n - 8 k]/((n - 8 k)! k! (8!)^k), {k, 0, Floor[n/8]}], {n, 0, 25}]
a[n_] := a[n] = If[n == 0, 1, Sum[If[k == 8, 0, Binomial[n - 1, k - 1] a[n - k]], {k, 1, n}]]; Table[a[n], {n, 0, 25}]
Showing 1-10 of 19 results.
Comments