cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100047 A Chebyshev transform of the Fibonacci numbers.

Original entry on oeis.org

0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1, 0, 1, 1, -1, -1, 0, -1, -1, 1, 1
Offset: 0

Views

Author

Paul Barry, Oct 31 2004

Keywords

Comments

Multiplicative with a(p^e) = (-1)^(e+1) if p = 2, 0 if p = 5, 1 if p == 1 or 9 (mod 10), (-1)^e if p == 3 or 7 (mod 10). - David W. Wilson, Jun 10 2005
This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 1, P2 = -1, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 24 2014
From Peter Bala, Mar 24 2014: (Start)
This is the particular case P1 = 1, P2 = -1, Q = 1 of the following results:
Let P1, P2 and Q be integers. Let alpha and beta denote the roots of the quadratic equation x^2 - 1/2*P1*x + 1/4*P2 = 0. Let T(n,x;Q) denote the bivariate Chebyshev polynomial of the first kind defined by T(n,x;Q) = 1/2*( (x + sqrt(x^2 - Q))^n + (x - sqrt(x^2 - Q))^n ) (when Q = 1, T(n,x;Q) reduces to the ordinary Chebyshev polynomial of the first kind T(n,x)). Then we have
1) The sequence A(n) := ( T(n,alpha;Q) - T(n,beta;Q) )/(alpha - beta) is a linear divisibility sequence of the fourth order.
2) A(n) belongs to the 3-parameter family of fourth-order divisibility sequences found by Williams and Guy.
3) The o.g.f. of the sequence A(n) is the rational function x*(1 - Q*x^2)/(1 - P1*x + (P2 + 2*Q)*x^2 - P1*Q*x^3 + Q^2*x^4).
4) The o.g.f. is the Chebyshev transform of the rational function x/(1 - P1*x + P2*x^2), where the Chebyshev transform takes the function A(x) to the function (1 - Q*x^2)/(1 + Q*x^2)*A(x/(1 + Q*x^2)).
5) Let q = sqrt(Q) and set a = sqrt( q + (P2)/(4*q) + (P1)/2 ) and b = sqrt( q + (P2)/(4*q) - (P1)/2 ). Then the o.g.f. of the sequence A(n) is the Hadamard product of the rational functions x/(1 - (a + b)*x + q*x^2) and x/(1 - (a - b)*x + q*x^2). Thus A(n) is the product of two (usually, non-integer) Lucas-type sequences.
6) A(n) = the bottom left entry of the 2 X 2 matrix 2*T(n,1/2*M;Q), where M is the 2 X 2 matrix [0, -P2; 1, P1].
For examples of the above see A006238, A054493, A078070, A092184, A098306, A100048, A108196, A138573, A152090 and A218134. (End)

Examples

			A Chebyshev transform of the Fibonacci numbers A000045: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)).
The denominator is the 10th cyclotomic polynomial.
G.f. = x + x^2 - x^3 - x^4 - x^6 - x^7 + x^8 + x^9 + x^11 + x^12 - x^13 + ...
		

Crossrefs

Programs

  • Maple
    a := n -> (-1)^iquo(n, 5)*signum(mods(n, 5)):
    seq(a(n), n=0..89); # after Michael Somos, Peter Luschny, Dec 30 2018
  • Mathematica
    a[ n_] := {1, 1, -1, -1, 0, -1, -1, 1, 1, 0}[[Mod[ n, 10, 1]]]; (* Michael Somos, May 24 2015 *)
    a[ n_] := (-1)^Quotient[ n, 5] Sign[ Mod[ n, 5, -2]]; (* Michael Somos, May 24 2015 *)
    a[ n_] := (-1)^Quotient[n, 5] {1, 1, -1, -1, 0}[[Mod[ n, 5, 1]]]; (* Michael Somos, May 24 2015 *)
    LinearRecurrence[{1, -1, 1, -1}, {0, 1, 1, -1}, 90] (* Jean-François Alcover, Jun 11 2019 *)
  • PARI
    {a(n) = (-1)^(n\5) * [0, 1, 1, -1, -1][n%5+1]}; /* Michael Somos, May 24 2015 */
    
  • PARI
    {a(n) = (-1)^(n\5) * sign( centerlift( Mod(n, 5)))}; /* Michael Somos, May 24 2015 */

Formula

G.f.: x*(1 - x^2)/(1 - x + x^2 - x^3 + x^4).
a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4).
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k *binomial(n-k, k)*A000045(n-2*k)/(n -k).
From Peter Bala, Mar 24 2014: (Start)
a(n) = (T(n,alpha) - T(n,beta))/(alpha - beta), where alpha = (1 + sqrt(5))/4 and beta = (1 - sqrt(5))/4 and T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = bottom left entry of the matrix T(n, M), where M is the 2 X 2 matrix [0, 1/4; 1, 1/2].
The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/2*(sqrt(5) + 1)*x + x^2) and x/(1 - 1/2*(sqrt(5) - 1)*x + x^2). (End)
Euler transform of length 10 sequence [ 1, -2, 0, 0, -1, 0, 0, 0, 0, 1]. - Michael Somos, May 24 2015
a(n) = a(-n) = -a(n + 5) for all n in Z. - Michael Somos, May 24 2015
|A011558(n)| = |A080891(n)| = |a(n)| = A244895(n). - Michael Somos, May 24 2015

A092184 Sequence S_6 of the S_r family.

Original entry on oeis.org

0, 1, 6, 25, 96, 361, 1350, 5041, 18816, 70225, 262086, 978121, 3650400, 13623481, 50843526, 189750625, 708158976, 2642885281, 9863382150, 36810643321, 137379191136, 512706121225, 1913445293766, 7141075053841, 26650854921600, 99462344632561, 371198523608646
Offset: 0

Views

Author

Rainer Rosenthal, Apr 03 2004

Keywords

Comments

The r-family of sequences is S_r(n) = 2*(T(n,(r-2)/2) - 1)/(r-4) provided r is not equal to 4 and S_4(n) = n^2 = A000290(n). Here T(n,x) are Chebyshev's polynomials of the first kind. See their coefficient triangle A053120. See also the R. Stephan link for the explicit formula for s_k(n) for k not equal to 4 (Stephan's s_k(n) is identical with S_r(n)).
An integer n is in this sequence iff mutually externally tangent circles with radii n, n+1, n+2 have Soddy circles (i.e., circles tangent to all three) of rational radius. - James R. Buddenhagen, Nov 16 2005
This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 6, P2 = 8, Q = 1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014
a(n) is the block size of the (n-1)-th design in a sequence of multi-set designs with 2 blocks, see A335649. - John P. McSorley, Jun 22 2020

Examples

			a(3)=25 because a(1)=1 and a(2)=6 and a(1)*a(3) = 1*25 = (6-1)^2 = (a(2)-1)^2.
		

Crossrefs

See A001110=S_36 for further references to S_r sequences.
Other members of this r-family are: A007877 (r=2), |A078070| (r=3), A004146 (r=5), A054493 (r=7). A098306, A100047. A001353, A001834. A001350, A052530.

Programs

  • Magma
    [Floor(1/2*(-2+(2+Sqrt(3))^n+(2-Sqrt(3))^n)): n in [0..30]]; // Vincenzo Librandi, Oct 14 2015
  • Maple
    A092184 := proc(n)
        option remember;
        if n <= 1 then
            n;
        else
            4*procname(n-1)-procname(n-2)+2 ;
        end if ;
    end proc:
    seq(A092184(n),n=0..10) ;# Zerinvary Lajos, Mar 09 2008
  • Mathematica
    Table[Simplify[ -((2 + Sqrt[3])^n - 1)*((2 - Sqrt[3])^n - 1)]/2, {n, 0, 26}] (* Stefan Steinerberger, May 15 2007 *)
    LinearRecurrence[{5,-5,1},{0,1,6},27] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[x (1 + x)/(1 - 5 x + 5 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2015 *)
  • PARI
    Vec(x*(1+x)/(1 - 5*x + 5*x^2 - x^3) + O(x^50)) \\ Michel Marcus, Oct 14 2015
    

Formula

S_r type sequences are defined by a(0)=0, a(1)=1, a(2)=r and a(n-1)*a(n+1) = (a(n)-1)^2. This sequence emanates from r=6.
a(n) = 1/2*(-2 + (2+sqrt(3))^n + (2-sqrt(3))^n). - Ralf Stephan, Apr 14 2004
G.f.: x*(1+x)/(1 - 5*x + 5*x^2 - x^3) = x*(1+x)/((1-x)*(1 - 4*x + x^2)). [from the Ralf Stephan link]
a(n) = T(n, 2)-1 = A001075(n)-1, with Chebyshev's polynomials T(n, 2) of the first kind.
a(n) = b(n) + b(n-1), n >= 1, with b(n):=A061278(n) the partial sums of S(n, 4) = U(n, 2) = A001353(n+1) Chebyshev's polynomials of the second kind.
An integer k is in this sequence iff k is nonnegative and (k^2 + 2*k)/3 is a square. - James R. Buddenhagen, Nov 16 2005
a(0)=0, a(1)=1, a(n+1) = 3 + floor(a(n)*(2+sqrt(3))). - Anton Vrba (antonvrba(AT)yahoo.com), Jan 16 2007
a(n) = 4*a(n-1) - a(n-2) + 2. - Zerinvary Lajos, Mar 09 2008
From Peter Bala, Mar 25 2014: (Start)
a(2*n) = 6*A001353(n)^2; a(2*n+1) = A001834(n)^2.
a(n) = u(n)^2, where {u(n)} is the Lucas sequence in the quadratic integer ring Z[sqrt(6)] defined by the recurrence u(0) = 0, u(1) = 1, u(n) = sqrt(6)*u(n-1) - u(n-2) for n >= 2.
Equivalently, a(n) = U(n-1,sqrt(6)/2)^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = (1/2)*( ((sqrt(6) + sqrt(2))/2)^n - ((sqrt(6) - sqrt(2))/2)^n )^2.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -2; 1, 3] and T(n,x) denotes the Chebyshev polynomial of the first kind. Cf. A098306.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
exp( Sum_{n >= 1} 2*a(n)*x^n/n ) = 1 + Sum_{n >= 1} A052530(n)*x^n. Cf. A001350. - Peter Bala, Mar 19 2015
E.g.f.: exp(2*x)*cosh(sqrt(3)*x) - cosh(x) - sinh(x). - Stefano Spezia, Oct 13 2019

Extensions

Extension and Chebyshev comments from Wolfdieter Lang, Sep 10 2004

A140824 Expansion of (x-x^3)/(1-3*x+2*x^2-3*x^3+x^4).

Original entry on oeis.org

0, 1, 3, 6, 15, 41, 108, 281, 735, 1926, 5043, 13201, 34560, 90481, 236883, 620166, 1623615, 4250681, 11128428, 29134601, 76275375, 199691526, 522799203, 1368706081, 3583319040, 9381251041, 24560434083, 64300051206, 168339719535, 440719107401, 1153817602668
Offset: 0

Views

Author

N. J. A. Sloane, Sep 07 2009, based on email from R. K. Guy, Mar 09 2009

Keywords

Comments

Case P1 = 3, P2 = 0, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -2, 3, -1}, {0, 1, 3, 6}, 50] (* G. C. Greubel, Aug 08 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec((x-x^3)/(1-3*x+2*x^2-3*x^3+x^4))) \\ G. C. Greubel, Aug 08 2017

Formula

a(0) = 0, a(1) = 1, a(2) = 3, a(3) = 6, a(n) - 3 a(n + 1) + 2 a(n + 2) - 3 a(n + 3) + a(n + 4) = 0.
From Peter Bala, Mar 25 2014: (Start)
a(n) = 2/3*( T(n,3/2) - T(n,0) ), where T(n,x) is a Chebyshev polynomial of the first kind.
a(n) = 1/3 * (A005248(n) - (i^n + (-i)^n)) = 1/3 * (Fibonacci(2*n-1) + Fibonacci(2*n+1) - (i^n + (-i)^n)).
a(n) = bottom left entry of the 2 X 2 matrix 2*T(n, 1/2*M), where M is the 2 X 2 matrix [0, 0; 1, 3].
The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/sqrt(2)*(sqrt(5) + i)*x + x^2) and x/(1 - 1/sqrt(2)*(sqrt(5) - i)*x + x^2). See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. (End)
a(n) = A099483(n) - A099483(n-2). - R. J. Mathar, Feb 10 2016
Showing 1-3 of 3 results.