A098430 a(n) = 4^n*(2*n)!/(n!)^2.
1, 8, 96, 1280, 17920, 258048, 3784704, 56229888, 843448320, 12745441280, 193730707456, 2958796259328, 45368209309696, 697972450918400, 10768717814169600, 166556168859156480, 2581620617316925440, 40091049586568724480, 623638549124402380800, 9715632133727531827200
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Programs
-
Haskell
a098430 n = a000302 n * a000984 n -- Reinhard Zumkeller, Nov 14 2014
-
Magma
[4^n*Factorial(2*n)/Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Jul 05 2011
-
Maple
A098430 := n -> 4^n*binomial(2*n,n): seq(A098430(n), n=0..30); # Wesley Ivan Hurt, Jul 16 2014
-
Mathematica
CoefficientList[Series[1/Sqrt[1 - 16 x], {x, 0, 16}], x] (* Robert G. Wilson v, Jun 28 2012 *) Table[4^n(2n)!/(n!)^2,{n,0,20}] (* Harvey P. Dale, Aug 13 2021 *)
-
PARI
/* as lattice paths: same as in A092566 but use */ steps=[[1,0], [1,0], [0,1], [0,1]]; /* note the double [1,0] and [0,1] */ /* Joerg Arndt, Jul 01 2011 */
-
Sage
a = lambda n: 16^n*hypergeometric([-2*n, 1/2], [1], 2) [simplify(a(n)) for n in range(23)] # Peter Luschny, May 19 2015
Formula
a(n) = 4^n*binomial(2*n, n) = 4^n*A000984(n).
E.g.f.: exp(8*x)*BesselI(0, 8*x).
G.f.: 1/sqrt(1-16*x). - Zerinvary Lajos, Dec 20 2008, corrected R. J. Mathar, May 18 2009
a(n) = (1/Pi)*Integral_{x=-2..2} (2*x)^(2*n)/sqrt((2-x)*(2+x)) dx. - Peter Luschny, Sep 12 2011
D-finite with recurrence: n*a(n) + 8*(-2*n+1)*a(n-1) = 0. - R. J. Mathar, Nov 10 2014
a(n) = A249308(2*n). - Reinhard Zumkeller, Nov 14 2014
a(n) = 16^n*hypergeometric([-2*n, 1/2], [1], 2). - Peter Luschny, May 19 2015
a(n) = A174301(2n,n). - Alois P. Heinz, Apr 15 2019
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = 16/15 + 16*sqrt(15)*arcsin(1/4)/225.
Sum_{n>=0} (-1)^n/a(n) = 16/17 - 16*sqrt(17)*arcsinh(1/4)/289. (End)
a(n) = Sum_{k = 0..2*n} (-1)^k *A000984(k) * A000984(2*n-k). Cf. Sum_{k = 0..2*n} A000984(k) * A000984(2*n-k) = 16^n. - Peter Bala, Aug 23 2025
Comments