cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A097372 Numbers n such that n=(d_1+6)*(d_2+6)*...*(d_k+6) where d_1 d_2 ... d_k is the decimal expansion of n.

Original entry on oeis.org

90, 840, 4320, 59400, 60480, 917280, 2419200, 34992000, 3714984000, 460522782720, 896168448000, 2194698240000, 39109522636800, 229419122688000, 239446056960000, 650997662515200, 3954407288832000, 182279345504256000, 883270791696384000, 275333274192936960000
Offset: 1

Views

Author

Farideh Firoozbakht, Sep 21 2004

Keywords

Examples

			90 is in the sequence because 90 = (9+6)*(0+6).
		

Crossrefs

Programs

  • Mathematica
    Do[h=IntegerDigits[n];l=Length[h];If[n==Product[h[[k]]+6, {k, l}], Print[n]], {n, 130000000}]

Extensions

More terms from Giovanni Resta, Jan 16 2006
a(19)-a(24) from Hiroaki Yamanouchi, Sep 08 2014
a(25)-a(29) from Max Alekseyev, Jan 25 2015

A098681 Largest prime smaller than n^n.

Original entry on oeis.org

3, 23, 251, 3121, 46649, 823541, 16777213, 387420479, 9999999967, 285311670569, 8916100448237, 302875106592241, 11112006825557999, 437893890380859323, 18446744073709551557, 827240261886336764159, 39346408075296537575359
Offset: 2

Views

Author

Olaf Voß, Oct 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    PrimePrev[n_]:=Module[{k},k=n-1;While[ !PrimeQ[k],k-- ];k];f[n_]:=n^n;lst={};Do[AppendTo[lst,PrimePrev[f[n]]],{n,30}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 25 2010 *)
    Table[NextPrime[n^n,-1],{n,2,20}] (* Harvey P. Dale, Dec 02 2017 *)

A333184 a(n) = n^n - (PrevPrime(n^n) + NextPrime(n^n)) / 2.

Original entry on oeis.org

0, 1, 2, -4, 0, -1, -20, 0, 7, -10, -8, -2, -5, 12, 23, -28, -21, -8, -20, -15, -32, 53, -30, -47, 10, -29, -48, 33, -6, 8, 20, 71, -5, -15, -6, 3, 109, 23, -50, 41, 57, 172, -170, 1, -122, -237, 161, -8, 91, -112, 67, 253, 38, 75, 343, -188, 43, 88, 123, 96
Offset: 2

Views

Author

Hugo Pfoertner, Mar 10 2020

Keywords

Examples

			   n Previous P      n^n       Next P    a(n)
     A098681(n)  A000312(n)  A098682(n)
   2          3           4           5   0
   3         23          27          29   1
   4        251         256         257   2
   5       3121        3125        3137  -4
   6      46649       46656       46663   0
   7     823541      823543      823547  -1
   8   16777213    16777216    16777259 -20
   9  387420479   387420489   387420499   0
  10 9999999967 10000000000 10000000019   7
		

Crossrefs

Cf. A333185 (position of terms = 0).

Programs

  • Maple
    a:= n-> (m-> m-(prevprime(m)+nextprime(m))/2)(n^n):
    seq(a(n), n=2..65);  # Alois P. Heinz, Mar 10 2020
  • PARI
    for(n=2,61, my(f=n^n); print1(f-(precprime(f)+nextprime(f))/2,", "))

A116481 a(n) = n-th prime larger than n^n.

Original entry on oeis.org

2, 7, 37, 271, 3181, 46703, 823621, 16777421, 387420713, 10000000207, 285311671039, 8916100448623, 302875106592719, 11112006825558313, 437893890380859959, 18446744073709552357, 827240261886336765209
Offset: 1

Views

Author

Zak Seidov, Feb 17 2006

Keywords

Examples

			a(3)=37 because primes larger than 3^3=27 are 29,31,37,41,... and 37 is 3rd prime > 27.
		

Crossrefs

Cf. A098682.

Programs

  • Mathematica
    Do[Print[Prime[PrimePi[n^n]+n]],{n,12}]
  • PARI
    { a(n) = my(p); p=n^n; for(i=1,n,p=nextprime(p+1)); p; } \\ Max Alekseyev, Feb 01 2007

Extensions

More terms from Jon E. Schoenfield, Sep 07 2006
Further terms from Max Alekseyev, Feb 01 2007

A193813 Least k such that n^n + k + 1 is a prime.

Original entry on oeis.org

0, 0, 1, 0, 11, 6, 3, 42, 9, 18, 61, 34, 15, 26, 27, 12, 73, 106, 17, 90, 31, 86, 13, 94, 95, 42, 67, 134, 119, 18, 57, 6, 57, 62, 53, 30, 41, 114, 9, 156, 109, 12, 3, 402, 121, 456, 533, 36, 17, 30, 225, 252, 19, 192, 101, 176, 391, 44, 193, 256, 101, 78, 453
Offset: 1

Views

Author

Michel Lagneau, Aug 06 2011

Keywords

Examples

			a(5) = 11 because 5^5 + 11 + 1 = 37 is prime.
		

Crossrefs

Programs

  • Mathematica
    a={};Do[k = 0; While[ !PrimeQ[n^n + k + 1], k++ ]; AppendTo[a, k], {n, 1, 100} ];a
  • PARI
    a(n) = nextprime(n^n) - n^n - 1; \\ Michel Marcus, Aug 20 2019

Formula

a(n) = A098682(n) - n^n -1. - Michel Marcus, Aug 20 2019

A333185 Numbers k such that k^k is the average of its nearest 2 primes.

Original entry on oeis.org

2, 6, 9, 940
Offset: 1

Views

Author

Hugo Pfoertner, Mar 11 2020

Keywords

Examples

			          Previous P         k^k           Next P
  a(n)  A098681(a(n))  A000312(a(n))  A098682(a(n))
    2               3              4              5
    6           46649          46656          46663
    9       387420479      387420489      387420499
  940    940^940-3063        940^940   940^940+3063
		

Crossrefs

Programs

  • PARI
    isok(k) = if (k>1, my(x=k^k); precprime(x-1)+nextprime(x+1) == 2*x); \\ Michel Marcus, Mar 14 2020

Formula

A333184(a(n)) = 0.
A074966(a(n)) = A074967(a(n)).
Showing 1-6 of 6 results.