cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A099460 A Chebyshev transform of A099459 associated to the knot 9_48.

Original entry on oeis.org

1, 7, 39, 203, 1040, 5313, 27133, 138565, 707643, 3613904, 18456077, 94254531, 481354555, 2458260679, 12554250288, 64114111901, 327428500337, 1672165762785, 8539691368807, 43611901581472, 222724437852585
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

The denominator is a parameterization of the Alexander polynomial for the knot 9_48. The g.f. is the image of the g.f. of A099459 under the Chebyshev transform A(x) -> (1/(1+x^2))*A(x/(1+x^2)).

Crossrefs

Programs

  • Magma
    I:=[1,7,39,203]; [n le 4 select I[n] else 7*Self(n-1) - 11*Self(n-2) +7*Self(n-3) -Self(n-4): n in [1..31]]; // G. C. Greubel, Nov 18 2021
    
  • Mathematica
    LinearRecurrence[{7,-11,7,-1}, {1,7,39,203}, 30] (* G. C. Greubel, Nov 18 2021 *)
  • Sage
    def A099460_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2)/(1-7*x+11*x^2-7*x^3+x^4) ).list()
    A099460_list(30) # G. C. Greubel, Nov 18 2021

Formula

G.f.: (1+x^2)/(1 -7*x +11*x^2 -7*x^3 +x^4).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*( Sum_{j=0..n-2*k} C(n-2*k-j, j)(-9)^j*7^(n-2*k-2*j) ).
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)(-1)^k*A099459(n-2*k).
a(n) = (1/2)*Sum_{k=0..n} (-1)^((n-k)/2)*(1 + (-1)^(n+k))*binomial((n+k)/2, k) *A099459(k).
a(n) = Sum_{k=0..n} A099461(n-k)*binomial(1, k/2)*((1+(-1)^k)/2).

A190958 a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
Offset: 0

Views

Author

Keywords

Comments

For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
    
  • Mathematica
    LinearRecurrence[{2,-10}, {0,1}, 50]
  • PARI
    a(n)=([0,1; -10,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    [lucas_number1(n,2,10) for n in (0..50)] # G. C. Greubel, Jun 10 2022

Formula

G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022

A099461 An Alexander sequence for the knot 9_48.

Original entry on oeis.org

1, 7, 38, 196, 1001, 5110, 26093, 133252, 680510, 3475339, 17748434, 90640627, 462898478, 2364006148, 12072895733, 61655851222, 314874250049, 1608051650884, 8212262868470, 41939735818687, 214184746483778, 1093833919809295, 5586171115205846, 28528378178106436, 145693417671662033, 744051127629095062, 3799842775146922277, 19405662567631938052, 99104031922539424718
Offset: 0

Views

Author

Paul Barry, Oct 16 2004

Keywords

Comments

The denominator 1 -7*x +11*x^2 -7*x^3 +x^4 is a parameterization of the Alexander polynomial for the knot 9_48. 1/(1 -7*x +11*x^2 -7*x^3 +x^4) is the image of the g.f. of A099459 under the modified Chebyshev transform A(x) -> (1/(1+x^2)^2)*A(x/(1+x^2)).

Crossrefs

Programs

  • Magma
    I:=[7,38,196,1001]; [1] cat [n le 4 select I[n] else 7*Self(n-1) - 11*Self(n-2) +7*Self(n-3) -Self(n-4): n in [1..41]]; // G. C. Greubel, Nov 18 2021
    
  • Mathematica
    LinearRecurrence[{7,-11,7,-1},{1,7,38,196,1001},40] (* Harvey P. Dale, Jun 18 2021 *)
  • Sage
    def A099461_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x)*(1+x)*(1+x^2)/(1-7*x+11*x^2-7*x^3+x^4) ).list()
    A099461_list(40) # G. C. Greubel, Nov 18 2021

Formula

a(n) = A099460(n) - A099460(n-2).
G.f.: (1-x)*(1+x)*(1+x^2)/(1-7*x+11*x^2-7*x^3+x^4). - Corrected by R. J. Mathar, Nov 23 2012

A102902 a(n) = 9*a(n-1) - 16*a(n-2), with a(0) = 1, a(1) = 9.

Original entry on oeis.org

1, 9, 65, 441, 2929, 19305, 126881, 833049, 5467345, 35877321, 235418369, 1544728185, 10135859761, 66507086889, 436390025825, 2863396842201, 18788331166609, 123280631024265, 808912380552641, 5307721328585529
Offset: 0

Views

Author

Paul Barry, Jan 17 2005

Keywords

Crossrefs

Programs

  • Magma
    [4^n*Evaluate(ChebyshevSecond(n+1), 9/8): n in [0..30]]; // G. C. Greubel, Dec 09 2022
  • Mathematica
    LinearRecurrence[{9,-16},{1,9},20] (* Harvey P. Dale, Jul 28 2016 *)
  • SageMath
    [lucas_number1(n,9,16) for n in range(1, 21)] # Zerinvary Lajos, Apr 23 2009
    

Formula

G.f.: 1/(1-9*x+16*x^2).
a(n) = Sum_{k=0..n} binomial(2*n-k+1, k)*4^k.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-16)^k*9^(n-2*k).
a(n) = 4^n * ChebyshevU(n, 9/8). - G. C. Greubel, Dec 09 2022
From Peter Bala, Jul 23 2025: (Start)
a(n) := ((9 + sqrt(17))^(n+1) - (9 - sqrt(17))^(n+1))/(2^(n+1)*sqrt(17)).
The following products telescope:
Product_{k >= 1} 1 + 4^k/a(k) = (1 + sqrt(17))/2.
Product_{k >= 1} 1 - 4^k/a(k) = (1 + sqrt(17))/18.
Product_{k >= 1} 1 + (-4)^k/a(k) = (17 + sqrt(17))/34.
Product_{k >= 1} 1 - (-4)^k/a(k) = (17 + sqrt(17))/18. (End)
Showing 1-4 of 4 results.