A100407
Numbers k such that k^k+2 is prime.
Original entry on oeis.org
1, 3, 737, 1349
Offset: 1
737 is in the sequence because 737^737+2 is prime.
A166852
Numbers k such that k^k + 3 is prime.
Original entry on oeis.org
-
Do[If[GCD[n,3]==1&&PrimeQ[n^n+3],Print[n]],{n,2,5362,2}]
-
is(n)=ispseudoprime(n^n+3) \\ Charles R Greathouse IV, Jun 13 2017
A162927
Primes of the form n^n-2.
Original entry on oeis.org
2, 823541, 1978419655660313589123977, 5842587018385982521381124419, 88817841970012523233890533447265623, 66009724686219550843768321818371771650147004059278069406814190436565131829325062447
Offset: 1
-
f[n_]:=n^n-2; lst={};Do[If[PrimeQ[f[n]],AppendTo[lst,f[n]]],{n,5!}];lst
Join[{2},Select[Table[n^n-2,{n,1,51,2}],PrimeQ]] (* Harvey P. Dale, Feb 12 2023 *)
A166853
a(n) is the smallest number m such that m^m-n is prime, or zero if there is no such m.
Original entry on oeis.org
2, 2, 8, 3, 4, 5, 6, 3, 0, 3, 78, 13, 6, 3, 4, 3, 4, 17, 12, 3, 118, 3, 4, 3, 3
Offset: 1
We have a(1)=2 since 1^1-1 is not prime, but 2^2-1 is prime.
a(9)=0 since 2^2-9 is not prime, and if m is an even number greater than 2 then m^m-9=(m^(m/2)-3)*(m^(m/2)+3) is composite. So there is no number m such that m^m-9 is prime. The same applies to any odd square > 25.
We have a(25)=3 since 3^3-25=2 is prime. But 25 is the only known square of the form m^m-2, so a(n)=0 for other odd squares > 25, e.g., n = 49,81,121,....
a(115)=2736 is the largest known term. 2736^2736-115 is a probable prime.
A300292
Numbers k such that k^k + 9 is a prime.
Original entry on oeis.org
A300976
Numbers k such that k^k - 5 is a prime.
Original entry on oeis.org
4, 104, 124, 728
Offset: 1
-
Select[Range[1000], PrimeQ[#^# - 5] &] (* Vaclav Kotesovec, Mar 25 2018 *)
-
isok(k) = ispseudoprime(k^k - 5); \\ Altug Alkan, Mar 17 2018
A300981
Numbers k such that k^k - 10 is a prime.
Original entry on oeis.org
-
Select[Range[1000], PrimeQ[#^# - 10] &] (* Vaclav Kotesovec, Mar 25 2018 *)
-
isok(k) = ispseudoprime(k^k - 10); \\ Altug Alkan, Mar 17 2018
A348329
Numbers k such that k' = k'', where ' is the arithmetic derivative.
Original entry on oeis.org
0, 1, 4, 27, 3125, 823543, 1647082, 2238771
Offset: 1
-
isA348329 := proc(n)
local d ;
d := A003415(n) ;
if A003415(d) = d then
true ;
else
false;
end if;
end proc:
for n from 0 do
if isA348329(n) then
print(n) ;
end if;
end do: # R. J. Mathar, Oct 19 2021
-
d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 2.5*10^6], d[#] == d[d[#]] &] (* Amiram Eldar, Oct 13 2021 *)
-
ad(n) = vecsum([n/f[1]*f[2]|f<-factor(n+!n)~]); \\ A003415
isok(k) = ad(k) == ad(ad(k)); \\ Michel Marcus, Oct 18 2021
-
from sympy import factorint
from itertools import count, islice
def ad(n): return 0 if n<2 else sum(n*e//p for p, e in factorint(n).items())
def agen(): yield from (k for k in count(0) if (adk:=ad(k)) == ad(adk))
print(list(islice(agen(), 5))) # Michael S. Branicky, Oct 12 2022
Showing 1-8 of 8 results.
Comments