cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A378412 Irregular triangle read by rows: T(n,k) is the coefficient of x^k in the domination polynomial of the n X n grid graph (n>=1, A104519(n+2)<=k<=n^2).

Original entry on oeis.org

1, 6, 4, 1, 10, 57, 98, 80, 36, 9, 1, 2, 40, 554, 2484, 5494, 7268, 6402, 3964, 1760, 556, 120, 16, 1, 22, 1545, 22594, 140304, 492506, 1126091, 1823057, 2204694, 2063202, 1528544, 908623, 435832, 168426, 51953, 12550, 2296, 300, 25, 1, 288, 20896, 478624
Offset: 1

Views

Author

Eric W. Weisstein, Nov 25 2024

Keywords

Comments

Sum_{k=A104519(n+2)..n^2} T(n,k) = A133515(n).
T(n,n^2) = 1.

Examples

			D_1(x)=x
D_2(x)=6*x^2+4*x^3+x^4
D_3(x)=10*x^3+57*x^4+98*x^5+80*x^6+36*x^7+9*x^8+x^9
D_4(x)=2*x^4+40*x^5+554*x^6+2484*x^7+5494*x^8+7268*x^9+6402*x^10+3964*x^11+1760*x^12+556*x^13+120*x^14+16*x^15+x^16
		

Crossrefs

Cf. A104519 (domination number of the (n-2) X (n-2) grid graph).
Cf. A133515 (number of dominating sets in the n X n grid graph).
Cf. A000290 (vertex count of the n X n grid graph = n^2).

A079326 a(n) = the largest number m such that if m monominoes are removed from an n X n square then an L-tromino must remain.

Original entry on oeis.org

1, 2, 7, 9, 17, 20, 31, 35, 49, 54, 71, 77, 97, 104, 127, 135, 161, 170, 199, 209, 241, 252, 287, 299, 337, 350, 391, 405, 449, 464, 511, 527, 577, 594, 647, 665, 721, 740, 799, 819, 881, 902, 967, 989, 1057, 1080, 1151, 1175, 1249, 1274, 1351, 1377, 1457
Offset: 2

Views

Author

Mambetov Timur (timur_teufel(AT)mail.ru), Feb 13 2003

Keywords

Examples

			a(3)=2 because if a middle row of 3 monominoes are removed from the 3 X 3, no L remains.
		

Crossrefs

Frobenius number for k successive numbers: A028387 (k=2), this sequence (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Programs

  • Mathematica
    Table[FrobeniusNumber[{a, a + 1, a + 2}], {a, 2, 54}] (* Zak Seidov, Jan 08 2015 *)

Formula

a(n) = (n^2)/2 - 1 (n even), (n^2-n)/2 - 1 (n odd).
a(n) = A204557(n-1) / (n-1). - Reinhard Zumkeller, Jan 18 2012
From Bruno Berselli, Jan 18 2011: (Start)
G.f.: x^2*(1+x+3*x^2-x^4)/((1+x)^2*(1-x)^3).
a(n) = n*(2*n+(-1)^n-1)/4 - 1.
a(n) = A105638(-n+2). (End)

Extensions

Edited by Don Reble, May 28 2007

A193764 The number of dominoes in a largest saturated domino covering of the n X n board (n>=2).

Original entry on oeis.org

2, 6, 12, 18, 26, 37, 48, 61, 76, 92, 109, 129, 149, 172, 196, 221, 248, 277, 308, 340, 373, 408, 445, 484, 524, 565, 608, 653, 700, 748, 797, 848, 901, 956, 1012, 1069, 1128, 1189, 1252, 1316, 1381, 1448, 1517, 1588, 1660, 1733, 1808, 1885, 1964, 2044, 2125
Offset: 2

Views

Author

Andrew Buchanan, Tanya Khovanova, Alex Ryba, Aug 06 2011

Keywords

Comments

A domino covering of a board is saturated if the removal of any domino leaves an uncovered cell.

Examples

			If you completely cover a 2 X 2 board with 3 dominoes, you can remove one and the board will still be covered. Hence a(2) < 3. On the other hand, you can tile the 2 X 2 board with 2 dominoes and a removal of one of them will leave both cells uncovered. Hence a(2) = 2.
		

Crossrefs

Formula

For n > 6, except n = 13, a(n) = n^2 + 4 - floor((n+2)^2/5).
a(n) = n^2 - A104519(n).
Empirical g.f.: x^2*(x^18 -2*x^17 +x^16 -x^13 +2*x^12 -3*x^11 +2*x^10 +x^9 -2*x^8 +2*x^6 -x^5 -2*x^4 -2*x^2 -2*x -2) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Oct 05 2014
Empirical g.f. confirmed with above formula and recurrence in A104519. - Ray Chandler, Jan 25 2024

A350823 Array read by antidiagonals: T(m,n) is the domination number of the grid graph P_m X P_n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 4, 4, 3, 2, 3, 4, 4, 4, 4, 4, 3, 3, 4, 5, 6, 6, 5, 4, 3, 3, 5, 6, 7, 7, 7, 6, 5, 3, 4, 5, 7, 7, 8, 8, 7, 7, 5, 4, 4, 6, 7, 8, 9, 10, 9, 8, 7, 6, 4, 4, 6, 8, 10, 11, 11, 11, 11, 10, 8, 6, 4
Offset: 1

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

Equivalently, the minimum number of X-pentominoes needed to cover an m X n grid.

Examples

			Table begins:
===================================
m\n | 1  2  3  4  5  6  7  8  9
----+------------------------------
  1 | 1  1  1  2  2  2  3  3  3 ...
  2 | 1  2  2  3  3  4  4  5  5 ...
  3 | 1  2  3  4  4  5  6  7  7 ...
  4 | 2  3  4  4  6  7  7  8 10 ...
  5 | 2  3  4  6  7  8  9 11 12 ...
  6 | 2  4  5  7  8 10 11 12 14 ...
  7 | 3  4  6  7  9 11 12 14 16 ...
  8 | 3  5  7  8 11 12 14 16 18 ...
  9 | 3  5  7 10 12 14 16 18 20 ...
  ...
		

Crossrefs

Row 4 is A193768.
Main diagonal is A104519.

Formula

T(m,n) = T(n,m).
T(1,n) = ceiling(n/3); T(2,n) = floor(n/2) + 1.

A193765 The number of dominoes in the largest saturated domino covering of the n X n board plus one (n >= 2).

Original entry on oeis.org

3, 7, 13, 19, 27, 38, 49, 62, 77, 93, 110, 130, 150, 173, 197, 222, 249, 278, 309, 341, 374, 409, 446, 485, 525, 566, 609, 654, 701, 749, 798, 849, 902, 957, 1013, 1070, 1129, 1190, 1253, 1317, 1382, 1449, 1518, 1589, 1661, 1734, 1809, 1886, 1965, 2045, 2126
Offset: 2

Views

Author

Andrew Buchanan, Tanya Khovanova, Alex Ryba, Aug 06 2011

Keywords

Comments

A domino covering of a board is saturated if the removal of any domino leaves an uncovered cell.
In a domino covering of an n X n board, a domino is redundant if its removal leaves a covering of the board. a(n) is the smallest size of board for which any domino covering must include a redundant domino.

Examples

			If you completely cover a 2 X 2 board with 3 dominoes, you can remove one and the board will still be covered. Hence a(2) >= 3. On the other hand, you can tile the 2 by 2 board with 2 dominoes and a removal of one of them will leave both cells uncovered. Hence a(2) = 3.
		

Crossrefs

Formula

For n > 6, except n = 13, a(n) = n^2 + 5 - floor((n+2)^2/5).
a(n) = n^2 +1 - A104519(n).
Empirical g.f.: x^2*(x^18 -2*x^17 +x^16 -x^13 +2*x^12 -3*x^11 +2*x^10 +x^9 -2*x^8 +x^6 -2*x^4 -2*x^2 -x -3) / ((x -1)^3*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Oct 05 2014
Empirical g.f. confirmed with above formula and recurrence in A104519. - Ray Chandler, Jan 25 2024

A369692 Connected domination number of the n X n grid graph.

Original entry on oeis.org

1, 2, 3, 7, 11, 14, 20, 26, 30, 39, 47, 52, 64, 74, 80, 95
Offset: 1

Views

Author

Alexander D. Healy, Feb 25 2024

Keywords

Examples

			From _Andrew Howroyd_, Mar 06 2024: (Start)
a(16) = 95 = 16 + 5*14 + 4*2 + 1.
  . . . . . . . . . . . . . . . .
  X X X X X X X X X X X X X X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X X
  . X . . X . . X . . X . . X . .
  . X . . X . . X . . X . . X X .
(End)
		

Crossrefs

Cf. A381730 (numbers of minimum connected dominating sets).

Formula

a(3*n) <= n*(3*n+1); a(3*n-1) <= 3*n^2 - 1; a(3*n-2) <= (n-1)*(3*n+1). Conjecturally these inequalities hold with equality for n > 1. - Andrew Howroyd, Mar 06 2024

Extensions

a(10)-a(16) from Andrew Howroyd, Feb 25 2024

A347632 Number of minimum dominating sets in the n X n grid graph.

Original entry on oeis.org

1, 6, 10, 2, 22, 288, 2, 52, 32, 4, 32, 21600, 18, 540360, 34528, 100406, 70266144, 1380216154, 1682689266, 77900162, 233645826, 200997249200
Offset: 1

Views

Author

Eric W. Weisstein, Sep 09 2021

Keywords

Crossrefs

Main diagonal of A350820.
Cf. A104519 (domination number), A133515 (dominating sets), A290382 (minimal dominating sets).

Extensions

a(7)-a(12) from Andrew Howroyd, Jan 17 2022
a(13)-a(22) from Stephan Mertens, Aug 18 2024

A321684 Independent domination number of the n X n grid graph.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 10, 12, 16, 21, 24, 30, 35, 40, 47, 53, 60, 68, 76, 84, 92, 101, 111, 121, 131, 141, 152, 164, 176, 188, 200, 213, 227, 241, 255, 269, 284, 300, 316, 332, 348, 365, 383, 401, 419, 437, 456, 476, 496, 516, 536, 557, 579, 601, 623, 645, 668
Offset: 0

Views

Author

Andrey Zabolotskiy, Jan 14 2019

Keywords

Crossrefs

Programs

  • Maple
    ogf := (-41*x^6 + 47*x^5 - x^3 - x^2 + 41*x - 47)/((x - 1)^3*(x^4 + x^3 + x^2 + x + 1)): ser := series(ogf, x, 44):
    (0,1,2,3,4,7,10,12,16,21,24,30,35,40), seq(coeff(ser, x, n), n=0..42); # Peter Luschny, Jan 14 2019
  • PARI
    concat(0, Vec(x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Jan 14 2019

Formula

For n >= 14, a(n) = floor((n+2)^2 / 5 - 4).
a(n) = A104519(n+2), the domination number of the n X n grid graph, for all n except for n = 9, 11.
From Colin Barker, Jan 14 2019: (Start)
G.f.: x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n > 20.
(End)

A269706 Size of a minimum dominating set (domination number) in an n X n X n grid.

Original entry on oeis.org

1, 2, 6, 15, 25, 42, 65
Offset: 1

Views

Author

Eric W. Weisstein, Mar 04 2016

Keywords

Crossrefs

Cf. A104519 (size of a minimum dominating set (domination number) in an n X n grid)

Extensions

a(7) from Eric W. Weisstein, Aug 31 2021

A354673 Smallest number of unit cells that must be removed from an n X n square board in order to avoid any cycles.

Original entry on oeis.org

0, 1, 2, 4, 6, 10, 13, 18, 22, 28, 34, 42, 49, 58, 66, 76, 86, 98, 109, 122, 134, 148, 162, 178, 193, 210, 226, 244, 262, 282, 301, 322, 342, 364, 386, 410, 433, 458, 482, 508, 534, 562, 589, 618, 646, 676, 706, 738, 769, 802, 834, 868, 902, 938, 973, 1010, 1046
Offset: 1

Views

Author

Giedrius Alkauskas, Jun 02 2022

Keywords

Comments

A "cycle" means a rook-connected closed path of squares.
The proof of this result is given in the Links section.
a(n+1) is very close to A239231(n); more precisely, the difference is the sequence 1,0,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,3,2.

Examples

			For n = 2, a(2) = 1, since removing any unit square from the 2 X 2 board leaves no cycles.
For n = 5, a(5) = 6 removed unit squares can be arranged as follows:
  x****
  *x*x*
  **x**
  *x*x*
  *****
		

Crossrefs

Formula

a(n) = ceiling(n^2/3 - n/6 + 4/3) - ceiling(n/2) for n >= 3.
From Stefano Spezia, Jun 02 2022: (Start)
G.f.: x^2*(1 + x^2 + 2*x^4 - x^5 + x^6 - x^7 + x^8)/((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n > 2. (End)
Showing 1-10 of 10 results.