A109626 Consider the array T(n,m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from lower left to upper right.
1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 5, 2, 1, 2, 1, 1, 6, 5, 4, 3, 2, 1, 1, 7, 3, 5, 3, 3, 1, 1, 1, 8, 7, 2, 5, 4, 3, 2, 1, 1, 9, 4, 7, 3, 1, 4, 3, 2, 1, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 11, 5, 3, 2, 7, 6, 5, 1, 3, 1, 1, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 13, 6, 11, 10, 9, 4, 1, 3, 5
Offset: 1
Examples
Table begins: \k...0...1...2...3...4...5...6...7...8...9..10..11..12..13 n\ 1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2| 1 2 1 2 2 2 1 2 2 2 1 2 1 2 3| 1 3 3 1 3 3 3 3 3 3 3 3 1 3 4| 1 4 2 4 3 4 4 4 1 4 4 4 3 4 5| 1 5 5 5 5 1 5 5 5 5 4 5 5 5 6| 1 6 3 2 3 6 6 6 3 4 6 6 6 6 7| 1 7 7 7 7 7 7 1 7 7 7 7 7 7 8| 1 8 4 8 2 8 4 8 7 8 8 8 4 8 9| 1 9 9 3 9 9 3 9 9 1 9 9 6 9 10| 1 10 5 10 10 2 5 10 10 10 3 10 5 10 11| 1 11 11 11 11 11 11 11 11 11 11 1 11 11 12| 1 12 6 4 9 12 4 12 12 8 6 12 6 12 13| 1 13 13 13 13 13 13 13 13 13 13 13 13 1 14| 1 14 7 14 7 14 14 2 7 14 14 14 14 14 15| 1 15 15 5 15 3 10 15 15 10 15 15 5 15 16| 1 16 8 16 4 16 8 16 10 16 8 16 12 16
Links
- G. C. Greubel, Antidiagonals n = 1..100, flattened
Crossrefs
Rows: A000012, A083952, A083953, A083954, A083945, A083946, A083947, A083948, A083949, A083950, A084066, A084067.
Columns: A000012, A111627, A026741, A051176, A111607, A060791, A111608, A106608, A111609, A111610, A111611, A106612, A106614, A106618, A106620.
Programs
-
Mathematica
f[n_]:= f[n]= Block[{a}, a[0] = 1; a[l_]:= a[l]= Block[{k = 1, s = Sum[ a[i]*x^i, {i,0,l-1}]}, While[ IntegerQ[Last[CoefficientList[Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j,0,32}]]; T[n_, m_]:= f[n][[m]]; Flatten[Table[T[i,n-i], {n,15}, {i,n-1,1,-1}]]
-
PARI
A109626_row(n, len=40)={my(A=1, m); vector(len, k, if(k>m=1, while(denominator(polcoeff(sqrtn(O(x^k)+A+=x^(k-1), n), k-1))>1, m++); m, 1))} \\ M. F. Hasler, Jan 27 2025
Formula
When m is prime, column m is T(n,m) = n/gcd(m, n) = numerator of n/(n+m). - M. F. Hasler, Jan 27 2025
Comments