cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A029838 Expansion of square root of q times normalized Hauptmodul for Gamma(4) in powers of q^8.

Original entry on oeis.org

1, 1, -1, 0, 1, 0, -1, -1, 2, 1, -2, -1, 2, 1, -3, -1, 4, 2, -5, -2, 5, 2, -6, -3, 8, 4, -9, -4, 10, 4, -12, -6, 15, 7, -17, -7, 19, 8, -22, -10, 26, 12, -30, -13, 33, 14, -38, -17, 45, 21, -51, -22, 56, 24, -64, -29, 74, 33, -83, -36, 92, 40, -104, -46, 119, 53, -133, -58, 147, 63, -165, -73, 187, 83, -208, -90, 229, 99, -256
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - x^2 + x^4 - x^6 - x^7 + 2*x^8 + x^9 - 2*x^10 - x^11 + 2*x^12 + ...
G.f. = 1/q + q^7 - q^15 + q^31 - q^47 - q^55 + 2*q^63 + q^71 - 2*q^79 - q^87 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 221 Entry 1(i).

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2] QPochhammer[ q^2, q^4], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, -q] / QPochhammer[ q^4, q^4], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    a[ n_] := SeriesCoefficient[ q^(1/8) EllipticTheta[ 2, 0, q^(1/2)] / EllipticTheta[ 2, 0, q], {q, 0, n}]; (* Michael Somos, Aug 20 2014 *)
    (QPochhammer[-x, x^2, 1/2] + O[x]^100)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod( k=1, n, (1 + x^k)^(-(-1)^k), 1 + x * O(x^n)), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1 + if( j>1, x^(j-1))))); polcoeff(A[1,1] / A[2,1] + x * O(x^n), n))}; /* Michael Somos, Mar 02 2006 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A2 = subst(A, x, x^2); A = sqrt((A2 + 2  * x / A2) / A)); polcoeff(A, n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A) / eta(x^4 + A)^2, n))};

Formula

Expansion of f(x) / f(-x^4) = phi(x) / psi(x) = psi(x) / psi(x^2) = phi(-x^2) / psi(-x) = chi(x) * chi(-x^2) = chi^2(x) * chi(-x) = chi^2(-x^2) / chi(-x) = (phi(x) / psi(x^2))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(1/8) * eta(q^2)^3 / (eta(q) * eta(q^4)^2) in powers of q.
Euler transform of period 4 sequence [ 1, -2, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = 4 + v^4 - u^4*v^2. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = u^4 - v^4 - 4*u*v + u^3*v^3. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = 2 + w^2 - u^2*v*w. - Michael Somos, Mar 02 2006
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2^2 + u6^2 - u1*u2*u3*u6. - Michael Somos, Mar 02 2006
G.f. A(x) satisfies A(x)^2 = (A(x^4) + 2*x / A(x^4)) / A(x^2). - Michael Somos, Mar 08 2004
G.f. A(x) satisfies A(x) = (A(x^2)^2+4*x/A(x^2)^2)^(1/4). - Joerg Arndt, Aug 06 2011
G.f.: Product_{k>0} (1 + x^(2*k - 1)) / (1 + x^(2*k)) = (Sum_{k>0} x^((k^2 - k)/2)) / (Sum_{k>0} x^(k^2 - k)).
G.f.: 1 + x / (1 + x + x^2 / (1 + x^2 + x^3 / (1 + x^3 + ...))).
A082303(n) = (-1)^n a(n). Convolution square is A029839. Convolution inverse is A083365.
G.f.: 2 - 2/(1+Q(0)), where Q(k)= 1 + x^(k+1) + x^(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 02 2013
a(0) = 1, a(n) = (1/n)*Sum_{k=1..n} A109506(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 14 2017
abs(a(n)) ~ sqrt(sqrt(2) + (-1)^n) * exp(Pi*sqrt(n)/2^(3/2)) / (4*n^(3/4)). - Vaclav Kotesovec, Feb 07 2023

A083365 Expansion of psi(x) / phi(x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, 2, -3, 4, -6, 9, -12, 16, -22, 29, -38, 50, -64, 82, -105, 132, -166, 208, -258, 320, -395, 484, -592, 722, -876, 1060, -1280, 1539, -1846, 2210, -2636, 3138, -3728, 4416, -5222, 6163, -7256, 8528, -10006, 11716, -13696, 15986, -18624, 21666, -25169, 29190, -33808, 39104
Offset: 0

Views

Author

Michael Somos, Apr 24 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A079006.
Convolution inverse is A029838.

Examples

			G.f. = 1 - x + 2*x^2 - 3*x^3 + 4*x^4 - 6*x^5 + 9*x^6 - 12*x^7 + 16*x^8 - 22*x^9 + ...
G.f. = q - q^9 + 2*q^17 - 3*q^25 + 4*q^33 - 6*q^41 + 9*q^49 - 12*q^57 + 16*q^65 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 221 Entry 1(i).
  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • H. T. Davis, Introduction to nonlinear differential and integral equations, Dover Publications, Inc., New York 1962, p. 170 MR0181773 (31 #6000)

Crossrefs

(psi(x) / phi(x))^b: this sequence (b=1), A079006 (b=2), A187053 (b=3), A001938 (b=4), A195861 (b=5), A320049 (b=6), A320050 (b=7).

Programs

  • Mathematica
    phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[ psi[x]/phi[x], {x, 0, 100}]; A083365 = CoefficientList[s, x] (* Jean-François Alcover, Feb 18 2015 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k))^2/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 04 2016 *)
    (QPochhammer[-x^2, x^2, -1/2] + O[x]^50)[[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^2] / QPochhammer[ -x, x^2], {x, 0, n}]; (* Michael Somos, Oct 10 2019~ *)
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = 1 + O(x); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = sqrt(A / (1 + 4 * x * A^2))); polcoeff(sqrt(A), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = contfracpnqn( matrix(2, (sqrtint(8*n + 1) + 1)\2, i, j, if( i==1, x^(j-1), 1 + if( j>1, x^(j-1))))); polcoeff(A[2,1] / A[1,1] + x * O(x^n), n))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3, n))};

Formula

Expansion of f(-x^4) / f(x) = psi(x) / phi(x) = psi(x^2) / psi(x) = psi(-x) / phi(-x^2) = 1 / (chi(x) * chi(-x^2)) = 1 / (chi^2(x) * chi(-x)) = chi(-x) / chi^2(-x^2) = (psi(x^2) / phi(x))^(1/2) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of k^(1/4) / (2^(1/2) * q^(1/8)) in powers of q where k is elliptic modulus and q is the nome.
Expansion of q^(-1/8) * eta(q) * eta(q^4)^2 / eta(q^2)^3 in powers of q.
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = v^2 - u^4 * (1 + 4*v^4).
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = v^4 - u^4 + u*v + 4*(u*v)^3.
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = w - u^2*v*(1 + 2*w^2). - Michael Somos, May 29 2005
Given g.f. A(x), then B(q) = q * A(q^8) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u2*u6 - u1*u3 * (u2^2 + u6^2). - Michael Somos, May 29 2005
Given g.f. A(x), then B(q) = sqrt(2) * q * A(q^8) satisfies 0 = f(B(q), B(q^7)) where f(u, v) = (1 - u^8) * (1 - v^8) - (1 - u*v)^8. - Michael Somos, Jan 01 2006
Euler transform of period 4 sequence [-1, 2, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(-1/2) * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A108494. - Michael Somos, Feb 29 2012
G.f.: Product_{k>0} (1 + x^(2*k)) / (1 + x^(2*k - 1)) = (Sum_{k>0} x^(k^2 - k)) / (Sum_{k>0} x^((k^2 - k)/2)).
G.f.: 1 / (1 + x / (1 + x + x^2 / (1 + x^2 + x^3 / (1 + x^3 + ...)))).
A001935(n) = (-1)^n a(n).
G.f.: (1+1/Q(0))/2, where Q(k)= 1 + x^(k+1) + x^(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2))/(2^(11/4)*n^(3/4)). - Vaclav Kotesovec, Jul 04 2016
G.f.: (-x^2; x^2){-1/2} = ((-1; x^2){1/2})/2, where (a; q)n is the q-Pochhammer symbol. - _Vladimir Reshetnikov, Nov 20 2016
a(0) = 1, a(n) = -(1/n)*Sum_{k=1..n} A109506(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 14 2017
a(n) ~ (-1)^n * exp(Pi*sqrt(n/2)) / (2^(11/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
G.f.: exp(Sum_{k>=1} (-1)^k*x^k/(k*(1 + x^k))). - Ilya Gutkovskiy, May 28 2018

A096727 Expansion of eta(q)^8 / eta(q^2)^4 in powers of q.

Original entry on oeis.org

1, -8, 24, -32, 24, -48, 96, -64, 24, -104, 144, -96, 96, -112, 192, -192, 24, -144, 312, -160, 144, -256, 288, -192, 96, -248, 336, -320, 192, -240, 576, -256, 24, -384, 432, -384, 312, -304, 480, -448, 144, -336, 768, -352, 288, -624, 576, -384, 96, -456, 744, -576, 336, -432, 960, -576, 192
Offset: 0

Views

Author

Michael Somos, Jul 06 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 8*q + 24*q^2 - 32*q^3 + 24*q^4 - 48*q^5 + 96*q^6 - 64*q^7 + 24*q^8 - ...
		

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A096727List(len) = JacobiTheta4(len, 4)
    A096727List(57) |> println # Peter Luschny, Mar 12 2018
  • Magma
    A := Basis( ModularForms( Gamma0(4), 2), 57); A[1] - 8*A[2]; /* Michael Somos, Aug 21 2014 */
    
  • Mathematica
    CoefficientList[ Series[1 + Sum[k(-8x^k/(1 - x^k) + 48x^(2k)/(1 - x^(2k)) - 64x^(4k)/(1 - x^(4k))), {k, 1, 60}], {x, 0, 60}], x] (* Robert G. Wilson v, Jul 14 2004 *)
    a[ n_] := With[{m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ q Dt[ Log @ m, q], {q, 0, n}]]; (* Michael Somos, Sep 06 2012 *)
    a[ n_] := (-1)^n SquaresR[ 4, n]; (* Michael Somos, Jun 12 2014 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^4, {q, 0, n}]; (* Michael Somos, Jun 12 2014 *)
    QP = QPochhammer; s = QP[q]^8/QP[q^2]^4 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 8 * (-1)^n * sumdiv( n, d, if( d%4, d)))};
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x *O (x^n); polcoeff( eta(x + A)^8 / eta(x^2 + A)^4, n))};
    
  • Sage
    A = ModularForms( Gamma0(4), 2, prec=57) . basis(); A[0] - 8*A[1]; # Michael Somos, Jun 12 2014
    

Formula

a(n) = -8*sigma(n) + 48*sigma(n/2) - 64*sigma(n/4) for n>0, where sigma(n) = A000203(n) if n is an integer, otherwise 0.
Euler transform of period 2 sequence [ -8, -4, ...].
G.f.: Prod_{k>0} (1 - x^k)^8 / (1 - x^(2k))^4 = 1 + Sum_{k>0} k * (-8 * x^k / (1 - x^k) + 48 * x^(2*k) /(1 - x^(2*k)) - 64 * x^(4*k)/(1 - x^(4*k))).
G.f. theta_4(q)^4 = (Sum_{k} (-q)^(k^2))^4.
Expansion of phi(-q)^4 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Nov 01 2006
G.f. A(x) satisfies 0 = f(A(x), A(x^3), A(x^9)) where f(u, v, w) = v^4 - 30*u*v^2*w + 12*u*v*w * (u + 9*w) - u*w * (u^2 + 9*w*u + 81*w^2).
a(n) = (-1)^n * A000118(n). a(n) = 8 * A109506(n) unless n=0. a(2*n) = A004011(n). a(2*n + 1) = -A005879(n).
a(0) = 1, a(n) = -(8/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017

A322083 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+d)*d^k.

Original entry on oeis.org

1, 1, -2, 1, -3, 2, 1, -5, 4, -1, 1, -9, 10, -3, 2, 1, -17, 28, -13, 6, -4, 1, -33, 82, -57, 26, -12, 2, 1, -65, 244, -241, 126, -50, 8, 0, 1, -129, 730, -993, 626, -252, 50, -3, 3, 1, -257, 2188, -4033, 3126, -1394, 344, -45, 13, -4, 1, -513, 6562, -16257, 15626, -8052, 2402, -441, 91, -18, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2018

Keywords

Comments

For each k, the k-th column sequence (T(n,k))(n>=1) is a multiplicative function of n, equal to (-1)^(n+1)*(Id_k * 1) in the notation of the Bala link. - Peter Bala, Mar 19 2022

Examples

			Square array begins:
   1,   1,   1,    1,     1,     1,  ...
  -2,  -3,  -5,   -9,   -17,   -33,  ...
   2,   4,  10,   28,    82,   244,  ...
  -1,  -3, -13,  -57,  -241,  -993,  ...
   2,   6,  26,  126,   626,  3126,  ...
  -4, -12, -50, -252, -1394, -8052,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Sum[(-1)^(n/d+d) d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[(-1)^(j + 1) j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
    f[p_, e_, k_] := If[k == 0, e + 1, (p^(k*e + k) - 1)/(p^k - 1)]; f[2, e_, k_] := If[k == 0, e - 3, -((2^(k - 1) - 1)*2^(k*e + 1) + 2^(k + 1) - 1)/(2^k - 1)]; T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k, k], {n, 1, 11}, {k, n - 1, 0, -1}] // Flatten (* Amiram Eldar, Nov 22 2022 *)
  • PARI
    T(n,k)={sumdiv(n, d, (-1)^(n/d+d)*d^k)}
    for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018

Formula

G.f. of column k: Sum_{j>=1} (-1)^(j+1)*j^k*x^j/(1 + x^j).

A321558 a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^2.

Original entry on oeis.org

1, -5, 10, -13, 26, -50, 50, -45, 91, -130, 122, -130, 170, -250, 260, -173, 290, -455, 362, -338, 500, -610, 530, -450, 651, -850, 820, -650, 842, -1300, 962, -685, 1220, -1450, 1300, -1183, 1370, -1810, 1700, -1170, 1682, -2500, 1850, -1586, 2366
Offset: 1

Views

Author

N. J. A. Sloane, Nov 23 2018

Keywords

Examples

			G.f. = x - 5*x^2 + 10*x^3 - 13*x^4 + 26*x^5 - 50*x^6 + 50*x^7 + ... - _Michael Somos_, Oct 24 2019
		

Crossrefs

Column k=2 of A322083.
Cf. A321543 - A321557, A321810 - A321836 for similar sequences.

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^2*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
    
  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^2 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
  • PARI
    apply( A321558(n)=sumdiv(n, d, (-1)^(n\d-d)*d^2), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Sage
    s=(sum((-1)^(k+1)*k^2*x^k/(1 + x^k)  for k in (1..50))).series(x, 30); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018

Formula

G.f.: Sum_{k>=1} (-1)^(k+1)*k^2*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
G.f.: Sum_{k>=1} (-1)^(k+1)*(x^k - x^(2*k))/(1 + x^k)^3. - Michael Somos, Oct 24 2019
a(n) = -(-1)^n A328667(n). a(2*n + 1) = A078306(2*n + 1). a(2*n) = A078306(2*n) - 8*A078306(n). - Michael Somos, Oct 24 2019
From Peter Bala, Jan 29 2022: (Start)
Multiplicative with a(2^k) = - (2^(2*k+1) + 7)/3 for k >= 1 and a(p^k) = (p^(2*k+2) - 1)/(p^2 - 1) for odd prime p.
n^2 = (-1)^(n+1)*Sum_{d divides n} A067856(n/d)*a(d). (End)

A118271 Expansion of (9 * theta_4(q^3)^4 - theta_4(q)^4) / 8 in powers of q.

Original entry on oeis.org

1, 1, -3, -5, -3, 6, 15, 8, -3, -23, -18, 12, 15, 14, -24, -30, -3, 18, 69, 20, -18, -40, -36, 24, 15, 31, -42, -77, -24, 30, 90, 32, -3, -60, -54, 48, 69, 38, -60, -70, -18, 42, 120, 44, -36, -138, -72, 48, 15, 57, -93, -90, -42, 54, 231, 72, -24, -100, -90, 60, 90, 62, -96, -184, -3, 84, 180, 68, -54, -120, -144
Offset: 0

Views

Author

Michael Somos, Apr 21 2006

Keywords

Examples

			1 + q - 3*q^2 - 5*q^3 - 3*q^4 + 6*q^5 + 15*q^6 + 8*q^7 - 3*q^8 - ...
		

Crossrefs

Programs

  • Mathematica
    eta[q_] := q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[eta[q^2]^5 *eta[q^3]^3/(eta[q]*eta[q^6]^3), {q, 0, 55}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * (-x)^k^2, 1 + x * O(x^n))^4 - 9 * sum( k=1, sqrtint(n\3), 2 * (-x^3)^k^2, 1 + x * O(x^n))^4, n) / -8)}
    
  • PARI
    {a(n) = if( n<1, n==0, -(-1)^n * ( sumdiv( n, d, d * (1 - if( d%3==0, 3) - if( d%4==0, 1) + if(d%12==0, 3)))))}
    
  • PARI
    {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -3, if( p==3, 4 - 3^(e+1), (p^(e+1) - 1) / (p - 1))))))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^3 / eta(x + A) / eta(x^6 + A)^3, n))}

Formula

Expansion of eta(q^2)^5 * eta(q^3)^3 / (eta(q) * eta(q^6)^3) in powers of q.
Expansion of b(q^2) * (4*b(q^4) - b(q)) / 3 in powers of q where b() is a cubic AGM theta function.
Euler transform of period 6 sequence [ 1, -4, -2, -4, 1, -4, ...].
a(n) is multiplicative with a(2^e) = -3 if e>0, a(3^e) = 4 - 3^(e+1), a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
a(3*n) = A109506(3*n). a(3*n + 1) = A109506(3*n + 1). a(3*n + 2) = -3 * A118272(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 2^(2-s)) * (1 - 2^(1-s)) * (1 - 3^(2-s)). - Amiram Eldar, Oct 28 2023

A348608 a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(d + n/d) * d.

Original entry on oeis.org

1, -1, 1, 1, 1, -3, 1, 1, 4, -3, 1, -2, 1, -3, 4, 5, 1, -6, 1, -3, 4, -3, 1, 2, 6, -3, 4, -3, 1, -11, 1, 5, 4, -3, 6, 0, 1, -3, 4, 0, 1, -12, 1, -3, 9, -3, 1, 8, 8, -8, 4, -3, 1, -12, 6, -2, 4, -3, 1, -5, 1, -3, 11, 13, 6, -12, 1, -3, 4, -15, 1, 0, 1, -3, 9, -3, 8, -12, 1, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 25 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(# + n/#) # &, # <= Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[k x^(k^2)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if (d<=sqrt(n), (-1)^(d + n/d)*d)); \\ Michel Marcus, Oct 25 2021

Formula

G.f.: Sum_{k>=1} k * x^(k^2) / (1 + x^k).
a(n) = 1 if n = 1 or n is an odd prime (A006005) or n = 4 or n = 8. - Bernard Schott, Dec 18 2021
a(n) = A037213(n) - A348953(n). - Ridouane Oudra, Aug 21 2025

A348953 a(n) = -Sum_{d|n, d < sqrt(n)} (-1)^(d + n/d) * d.

Original entry on oeis.org

0, 1, -1, 1, -1, 3, -1, -1, -1, 3, -1, 2, -1, 3, -4, -1, -1, 6, -1, 3, -4, 3, -1, -2, -1, 3, -4, 3, -1, 11, -1, -5, -4, 3, -6, 6, -1, 3, -4, 0, -1, 12, -1, 3, -9, 3, -1, -8, -1, 8, -4, 3, -1, 12, -6, 2, -4, 3, -1, 5, -1, 3, -11, -5, -6, 12, -1, 3, -4, 15, -1, 0, -1, 3, -9, 3, -8, 12, -1, -8
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[-DivisorSum[n, (-1)^(# + n/#) # &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348953(n) = -sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} k * x^(k*(k + 1)) / (1 + x^k).
a(n) = A037213(n) - A348608(n). - Ridouane Oudra, Aug 21 2025

A348660 a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(n/d + 1) * d.

Original entry on oeis.org

1, -1, 1, -3, 1, 1, 1, -3, 4, 1, 1, -6, 1, 1, 4, -7, 1, -2, 1, 1, 4, 1, 1, -10, 6, 1, 4, 1, 1, -7, 1, -7, 4, 1, 6, -8, 1, 1, 4, -12, 1, 4, 1, 1, 9, 1, 1, -16, 8, -4, 4, 1, 1, 4, 6, -14, 4, 1, 1, -13, 1, 1, 11, -15, 6, 4, 1, 1, 4, -11, 1, -8, 1, 1, 9, 1, 8, 4, 1, -20
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 28 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, # <= Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k^2)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, if(sqr(d) <= n, (-1)^(n/d + 1)*d, 0)); \\ Michel Marcus, Oct 28 2021, corrected by Antti Karttunen, Dec 14 2021

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k * x^(k^2) / (1 + x^k).

A348954 a(n) = Sum_{d|n, d < sqrt(n)} (-1)^(n/d) * d.

Original entry on oeis.org

0, 1, -1, 1, -1, -1, -1, 3, -1, -1, -1, 6, -1, -1, -4, 3, -1, 2, -1, -1, -4, -1, -1, 10, -1, -1, -4, -1, -1, 7, -1, 7, -4, -1, -6, 2, -1, -1, -4, 12, -1, -4, -1, -1, -9, -1, -1, 16, -1, 4, -4, -1, -1, -4, -6, 14, -4, -1, -1, 13, -1, -1, -11, 7, -6, -4, -1, -1, -4, 11, -1, 8, -1, -1, -9, -1, -8, -4, -1, 20
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, (-1)^(n/#) # &, # < Sqrt[n] &], {n, 1, 80}]
    nmax = 80; CoefficientList[Series[Sum[(-1)^(k + 1) k x^(k (k + 1))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    A348954(n) = sumdiv(n,d,if((d*d)Antti Karttunen, Nov 05 2021

Formula

G.f.: Sum_{k>=1} (-1)^(k + 1) * k * x^(k*(k + 1)) / (1 + x^k).
Showing 1-10 of 10 results.