A117950 a(n) = n^2 + 3.
3, 4, 7, 12, 19, 28, 39, 52, 67, 84, 103, 124, 147, 172, 199, 228, 259, 292, 327, 364, 403, 444, 487, 532, 579, 628, 679, 732, 787, 844, 903, 964, 1027, 1092, 1159, 1228, 1299, 1372, 1447, 1524, 1603, 1684, 1767, 1852, 1939, 2028, 2119, 2212, 2307, 2404, 2503
Offset: 0
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969. - _Emeric Deutsch_, Sep 24 2010
- Eric Weisstein's World of Mathematics, Near-Square Prime
- Eric Weisstein's World of Mathematics, Fan Graph. - _Emeric Deutsch_, Sep 24 2010
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[n^2 + 3, {n, 0, 49}] (* Vladimir Joseph Stephan Orlovsky, Dec 15 2008 *)
-
PARI
a(n)=n^2+3 \\ Charles R Greathouse IV, Sep 24 2015
-
Sage
[lucas_number1(3,n,-3) for n in range(0, 51)] # Zerinvary Lajos, May 16 2009
Formula
G.f.: (3 - 5*x + 4*x^2)/(1-x)^3. - R. J. Mathar, Nov 20 2007
a(n) = A000290(n) + 3. - Omar E. Pol, Dec 20 2008
a(n) = ((n-3)^2 + 3*(n+1)^2)/4. - Reinhard Zumkeller, Feb 13 2009
a(n) = A132111(n-1,2) for n>1. - Reinhard Zumkeller, Aug 10 2007
a(n) = ceiling((n+1/n)^2), n>0. - Vincenzo Librandi, Oct 19 2011
a(n) = 2*n + a(n-1) - 1 (with a(0)=3). - Vincenzo Librandi, Nov 13 2010
a(n)*a(n-1) - 3 = (a(n)-n)^2 = A027688(n-1)^2. - Bruno Berselli, Dec 08 2011
From Amiram Eldar, Jul 21 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(3)*Pi*coth(sqrt(3)*Pi))/6.
Sum_{n>=0} (-1)^n/a(n) = (1 + (sqrt(3)*Pi)*csch(sqrt(3)*Pi))/6. (End)
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = 2*csch(sqrt(3)*Pi)*sinh(2*Pi)/sqrt(3).
Product_{n>=0} (1 - 1/a(n)) = sqrt(2/3)*csch(sqrt(3)*Pi)*sinh(sqrt(2)*Pi). (End)
E.g.f.: exp(x)*(3 + x + x^2). - Stefano Spezia, Aug 26 2024
Extensions
Edited by N. J. A. Sloane Apr 15 2009 at the suggestion of Leroy Quet
Comments