cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A002522 a(n) = n^2 + 1.

Original entry on oeis.org

1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 325, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1025, 1090, 1157, 1226, 1297, 1370, 1445, 1522, 1601, 1682, 1765, 1850, 1937, 2026, 2117, 2210, 2305, 2402, 2501
Offset: 0

Views

Author

Keywords

Comments

An n X n nonnegative matrix A is primitive (see A070322) iff every element of A^k is > 0 for some power k. If A is primitive then the power which should have all positive entries is <= n^2 - 2n + 2 (Wielandt).
a(n) = Phi_4(n), where Phi_k is the k-th cyclotomic polynomial.
As the positive solution to x=2n+1/x is x=n+sqrt(a(n)), the continued fraction expansion of sqrt(a(n)) is {n; 2n, 2n, 2n, 2n, ...}. - Benoit Cloitre, Dec 07 2001
a(n) is one less than the arithmetic mean of its neighbors: a(n) = (a(n-1) + a(n+1))/2 - 1. E.g., 2 = (1+5)/2 - 1, 5 = (2+10)/2 - 1. - Amarnath Murthy, Jul 29 2003
Equivalently, the continued fraction expansion of sqrt(a(n)) is (n;2n,2n,2n,...). - Franz Vrabec, Jan 23 2006
Number of {12,1*2*,21}-avoiding signed permutations in the hyperoctahedral group.
The number of squares of side 1 which can be drawn without lifting the pencil, starting at one corner of an n X n grid and never visiting an edge twice is n^2-2n+2. - Sébastien Dumortier, Jun 16 2005
Also, numbers m such that m^3 - m^2 is a square, (n*(1 + n^2))^2. - Zak Seidov
1 + 2/2 + 2/5 + 2/10 + ... = Pi*coth Pi [Jolley], see A113319. - Gary W. Adamson, Dec 21 2006
For n >= 1, a(n-1) is the minimal number of choices from an n-set such that at least one particular element has been chosen at least n times or each of the n elements has been chosen at least once. Some games define "matches" this way; e.g., in the classic Parker Brothers, now Hasbro, board game Risk, a(2)=5 is the number of cards of three available types (suits) required to guarantee at least one match of three different types or of three of the same type (ignoring any jokers or wildcards). - Rick L. Shepherd, Nov 18 2007
Positive X values of solutions to the equation X^3 + (X - 1)^2 + X - 2 = Y^2. To prove that X = n^2 + 1: Y^2 = X^3 + (X - 1)^2 + X - 2 = X^3 + X^2 - X - 1 = (X - 1)(X^2 + 2X + 1) = (X - 1)*(X + 1)^2 it means: (X - 1) must be a perfect square, so X = n^2 + 1 and Y = n(n^2 + 2). - Mohamed Bouhamida, Nov 29 2007
{a(k): 0 <= k < 4} = divisors of 10. - Reinhard Zumkeller, Jun 17 2009
Appears in A054413 and A086902 in relation to sequences related to the numerators and denominators of continued fractions convergents to sqrt((2*n)^2/4 + 1), n=1, 2, 3, ... . - Johannes W. Meijer, Jun 12 2010
For n > 0, continued fraction [n,n] = n/a(n); e.g., [5,5] = 5/26. - Gary W. Adamson, Jul 15 2010
The only real solution of the form f(x) = A*x^p with negative p which satisfies f^(m)(x) = f^[-1](x), x >= 0, m >= 1, with f^(m) the m-th derivative and f^[-1] the compositional inverse of f, is obtained for m=2*n, p=p(n)= -(sqrt(a(n))-n) and A=A(n)=(fallfac(p(n),2*n))^(-p(n)/(p(n)+1)), with fallfac(x,k):=Product_{j=0..k-1} (x-j) (falling factorials). See the T. Koshy reference, pp. 263-4 (there are also two solutions for positive p, see the corresponding comment in A087475). - Wolfdieter Lang, Oct 21 2010
n + sqrt(a(n)) = [2*n;2*n,2*n,...] with the regular continued fraction with period 1. This is the even case. For the general case see A087475 with the Schroeder reference and comments. For the odd case see A078370.
a(n-1) counts configurations of non-attacking bishops on a 2 X n strip [Chaiken et al., Ann. Combin. 14 (2010) 419]. - R. J. Mathar, Jun 16 2011
Also numbers k such that 4*k-4 is a square. Hence this sequence is the union of A053755 and A069894. - Arkadiusz Wesolowski, Aug 02 2011
a(n) is also the Moore lower bound on the order, A191595(n), of an (n,5)-cage. - Jason Kimberley, Oct 17 2011
Left edge of the triangle in A195437: a(n+1) = A195437(n,0). - Reinhard Zumkeller, Nov 23 2011
If h (5,17,37,65,101,...) is prime is relatively prime to 6, then h^2-1 is divisible by 24. - Vincenzo Librandi, Apr 14 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as A005899(n)^2 - a(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
a(n) is also the number of permutations simultaneously avoiding 213 and 321 in the classical sense which can be realized as labels on an increasing strict binary tree with 2n-1 nodes. See A245904 for more information on increasing strict binary trees. - Manda Riehl, Aug 07 2014
a(n-1) is the maximum number of stages in the Gale-Shapley algorithm for finding a stable matching between two sets of n elements given an ordering of preferences for each element (see Gura et al.). - Melvin Peralta, Feb 07 2016
Because of Fermat's little theorem, a(n) is never divisible by 3. - Altug Alkan, Apr 08 2016
For n > 0, if a(n) points are placed inside an n X n square, it will always be the case that at least two of the points will be a distance of sqrt(2) units apart or less. - Melvin Peralta, Jan 21 2017
Also the limit as q->1^- of the unimodal polynomial (1-q^(n*k+1))/(1-q) after making the simplification k=n. The unimodal polynomial is from O'Hara's proof of unimodality of q-binomials after making the restriction to partitions of size <= 1. See G_1(n,k) from arXiv:1711.11252. As the size restriction s increases, G_s->G_infinity=G: the q-binomials. Then substituting k=n and q=1 yields the central binomial coefficients: A000984. - Bryan T. Ek, Apr 11 2018
a(n) is the smallest number congruent to both 1 (mod n) and 2 (mod n+1). - David James Sycamore, Apr 04 2019
a(n) is the number of permutations of 1,2,...,n+1 with exactly one reduced decomposition. - Richard Stanley, Dec 22 2022
From Klaus Purath, Apr 03 2025: (Start)
The odd prime factors of these terms are always of the form 4*k + 1.
All a(n) = D satisfy the Pell equation (k*x)^2 - D*y^2 = -1. The values for k and the solutions x, y can be calculated using the following algorithm: k = n, x(0) = 1, x(1) = 4*D - 1, y(0) = 1, y(1) = 4*D - 3. The two recurrences are of the form (4*D - 2, -1). The solutions x, y of the Pell equations for n = {1 ... 14} are in OEIS.
It follows from the above that this sequence is a subsequence of A031396. (End)

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 17*x^4 + 26*x^5 + 37*x^6 + 50*x^7 + 65*x^8 + ...
		

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 120).
  • E. Gura and M. Maschler, Insights into Game Theory: An Alternative Mathematical Experience, Cambridge, 2008; p. 26.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, New York, 2001.

Crossrefs

Left edge of A055096.
Cf. A059100, A117950, A087475, A117951, A114949, A117619 (sequences of form n^2 + K).
a(n+1) = A101220(n, n+1, 3).
Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), this sequence (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Oct 30 2011
Cf. A002496 (primes).
Cf. A254858.
Subsequence of A031396.

Programs

Formula

O.g.f.: (1-x+2*x^2)/((1-x)^3). - Eric Werley, Jun 27 2011
Sequences of the form a(n) = n^2 + K with offset 0 have o.g.f. (K - 2*K*x + K*x^2 + x + x^2)/(1-x)^3 and recurrence a(n) = 3*a(n-1) - 3*a(n-2) + a*(n-3). - R. J. Mathar, Apr 28 2008
For n > 0: a(n-1) = A143053(A000290(n)) - 1. - Reinhard Zumkeller, Jul 20 2008
A143053(a(n)) = A000290(n+1). - Reinhard Zumkeller, Jul 20 2008
a(n)*a(n-2) = (n-1)^4 + 4. - Reinhard Zumkeller, Feb 12 2009
a(n) = A156798(n)/A087475(n). - Reinhard Zumkeller, Feb 16 2009
From Reinhard Zumkeller, Mar 08 2010: (Start)
a(n) = A170949(A002061(n+1));
A170949(a(n)) = A132411(n+1);
A170950(a(n)) = A002061(n+1). (End)
For n > 1, a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n - 2)^2 + (a(n) + n - 1 + a(n) + n)^2 = (n+1) *(6*n^4 + 18*n^3 + 26*n^2 + 19*n + 6) / 6 = (a(n) + n)^2 + ... + (a(n) + 2*n)^2. - Charlie Marion, Jan 10 2011
From Eric Werley, Jun 27 2011: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2.
a(n) = a(n-1) + 2*n - 1. (End)
a(n) = (n-1)^2 + 2(n-1) + 2 = 122 read in base n-1 (for n > 3). - Jason Kimberley, Oct 20 2011
a(n)*a(n+1) = a(n*(n+1) + 1) so a(1)*a(2) = a(3). More generally, a(n)*a(n+k) = a(n*(n+k) + 1) + k^2 - 1. - Jon Perry, Aug 01 2012
a(n) = (n!)^2* [x^n] BesselI(0, 2*sqrt(x))*(1+x). - Peter Luschny, Aug 25 2012
a(n) = A070216(n,1) for n > 0. - Reinhard Zumkeller, Nov 11 2012
E.g.f.: exp(x)*(1 + x + x^2). - Geoffrey Critzer, Aug 30 2013
a(n) = A254858(n-2,3) for n > 2. - Reinhard Zumkeller, Feb 09 2015
Sum_{n>=0} (-1)^n / a(n) = (1+Pi/sinh(Pi))/2 = 0.636014527491... = A367976 . - Vaclav Kotesovec, Feb 14 2015
Sum_{n>=0} 1/a(n) = (1 + Pi*coth(Pi))/2 = 2.076674... = A113319. - Vaclav Kotesovec, Apr 10 2016
4*a(n) = A001105(n-1) + A001105(n+1). - Bruno Berselli, Jul 03 2017
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi)*sinh(sqrt(2)*Pi).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi). (End)
Sum_{n>=0} a(n)/n! = 3*e. - Davide Rotondo, Feb 16 2025

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A001614 Connell sequence: 1 odd, 2 even, 3 odd, ...

Original entry on oeis.org

1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 50, 52, 54, 56, 58, 60, 62, 64, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 122
Offset: 1

Views

Author

Keywords

Comments

Next (2n-1) odd numbers alternating with next 2n even numbers. Squares (A000290(n)) occur at the A000217(n)-th entry. - Lekraj Beedassy, Aug 06 2004. - Comment corrected by Daniel Forgues, Jul 18 2009
a(t_n) = a(n(n+1)/2) = n^2 relates squares to triangular numbers. - Daniel Forgues
The natural numbers not included are A118011(n) = 4n - a(n) as n=1,2,3,... - Paul D. Hanna, Apr 10 2006
As a triangle with row sums = A069778 (1, 6, 21, 52, 105, ...): /Q 1;/Q 2, 4;/Q 5, 7, 9;/Q 10, 12, 14, 16;/Q ... . - Gary W. Adamson, Sep 01 2008
The triangle sums, see A180662 for their definitions, link the Connell sequence A001614 as a triangle with six sequences, see the crossrefs. - Johannes W. Meijer, May 20 2011
a(n) = A122797(n) + n - 1. - Reinhard Zumkeller, Feb 12 2012

Examples

			From _Omar E. Pol_, Aug 13 2013: (Start)
Written as a triangle the sequence begins:
   1;
   2,  4;
   5,  7,  9;
  10, 12, 14, 16;
  17, 19, 21, 23, 25;
  26, 28, 30, 32, 34, 36;
  37, 39, 41, 43, 45, 47, 49;
  50, 52, 54, 56, 58, 60, 62, 64;
  65, 67, 69, 71, 73, 75, 77, 79, 81;
  82, 84, 86, 88, 90, 92, 94, 96, 98, 100;
  ...
Right border gives A000290, n >= 1.
(End)
		

References

  • C. Pickover, Computers and the Imagination, St. Martin's Press, NY, 1991, p. 276.
  • C. A. Pickover, The Mathematics of Oz, Chapter 39, Camb. Univ. Press UK 2002.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A117384, A118011 (complement), A118012.
Cf. A069778. - Gary W. Adamson, Sep 01 2008
From Johannes W. Meijer, May 20 2011: (Start)
Triangle columns: A002522, A117950 (n>=1), A117951 (n>=2), A117619 (n>=3), A154533 (n>=5), A000290 (n>=1), A008865 (n>=2), A028347 (n>=3), A028878 (n>=1), A028884 (n>=2), A054569 [T(2*n,n)].
Triangle sums (see the comments): A069778 (Row1), A190716 (Row2), A058187 (Related to Kn11, Kn12, Kn13, Kn21, Kn22, Kn23, Fi1, Fi2, Ze1 and Ze2), A000292 (Related to Kn3, Kn4, Ca3, Ca4, Gi3 and Gi4), A190717 (Related to Ca1, Ca2, Ze3, Ze4), A190718 (Related to Gi1 and Gi2). (End)

Programs

  • Haskell
    a001614 n = a001614_list !! (n-1)
    a001614_list = f 0 0 a057211_list where
       f c z (x:xs) = z' : f x z' xs where z' = z + 1 + 0 ^ abs (x - c)
    -- Reinhard Zumkeller, Dec 30 2011
    
  • Magma
    [2*n-Round(Sqrt(2*n)): n in [1..80]]; // Vincenzo Librandi, Apr 17 2015
    
  • Maple
    A001614:=proc(n): 2*n - floor((1+sqrt(8*n-7))/2) end: seq(A001614(n),n=1..67); # Johannes W. Meijer, May 20 2011
  • Mathematica
    lst={};i=0;For[j=1, j<=4!, a=i+1;b=j;k=0;For[i=a, i<=9!, k++;AppendTo[lst, i];If[k>=b, Break[]];i=i+2];j++ ];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
    row[n_] := 2*Range[n+1]+n^2-1; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Oct 25 2013 *)
  • PARI
    a(n)=2*n - round(sqrt(2*n)) \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from math import isqrt
    def A001614(n): return (m:=n<<1)-(k:=isqrt(m))-int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = 2*n - floor( (1+ sqrt(8*n-7))/2 ).
a(n) = A005843(n) - A002024(n). - Lekraj Beedassy, Aug 06 2004
a(n) = A118012(A118011(n)). A117384( a(n) ) = n; A117384( 4*n - a(n) ) = n. - Paul D. Hanna, Apr 10 2006
a(1) = 1; then a(n) = a(n-1)+1 if a(n-1) is a square, a(n) = a(n-1)+2 otherwise. For example, a(21)=36 is a square therefore a(22)=36+1=37 which is not a square so a(23)=37+2=39 ... - Benoit Cloitre, Feb 07 2007
T(n,k) = (n-1)^2 + 2*k - 1. - Omar E. Pol, Aug 13 2013
a(n)^2 = a(n*(n+1)/2). - Ivan N. Ianakiev, Aug 15 2013
Let the sequence be written in the form of the triangle in the EXAMPLE section below and let a(n) and a(n+1) belong to the same row of the triangle. Then a(n)*a(n+1) + 1 = a(A000217(A118011(n))) = A000290(A118011(n)). - Ivan N. Ianakiev, Aug 16 2013
a(n) = 2*n-round(sqrt(2*n)). - Gerald Hillier, Apr 15 2015
From Robert Israel, Apr 20 2015 (Start):
G.f.: 2*x/(1-x)^2 - (x/(1-x))*Sum_{n>=0} x^(n*(n+1)/2) = 2*x/(1-x)^2 - (Theta2(0,x^(1/2)))*x^(7/8)/(2*(1-x)) where Theta2 is a Jacobi theta function.
a(n) = 2*n-1 - Sum_{i=0..n-2} A023531(i). (End)
a(n) = 3*n-A014132(n). - Chai Wah Wu, Oct 19 2024

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 16 2001

A028872 a(n) = n^2 - 3.

Original entry on oeis.org

1, 6, 13, 22, 33, 46, 61, 78, 97, 118, 141, 166, 193, 222, 253, 286, 321, 358, 397, 438, 481, 526, 573, 622, 673, 726, 781, 838, 897, 958, 1021, 1086, 1153, 1222, 1293, 1366, 1441, 1518, 1597, 1678, 1761, 1846, 1933, 2022, 2113, 2206, 2301
Offset: 2

Views

Author

Keywords

Comments

Number of edges in the join of two star graphs, each of order n, S_n * S_n. - Roberto E. Martinez II, Jan 07 2002
Number of vertices in the hexagonal triangle T(n-2) (see the He et al. reference). - Emeric Deutsch, Nov 14 2014
Positive X values of solutions to the equation X^3 + (X - 3)^2 + X - 6 = Y^2. To prove that X = n^2 + 4n + 1: Y^2 = X^3 + (X - 3)^2 + X - 6 = X^3 + X^2 - 5X + 3 = (X + 3)(X^2 - 2X + 1) = (X + 3)*(X - 1)^2 it means: X = 1 or (X + 3) must be a perfect square, so X = k^2 - 3 with k >= 2. we can put: k = n + 2, which gives: X = n^2 + 4n + 1 and Y = (n + 2)(n^2 + 4n). - Mohamed Bouhamida, Nov 29 2007
Equals binomial transform of [1, 5, 2, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
Let C = 2 + sqrt(3) = 3.732...; and 1/C = 0.267...; then a(n) = (n - 2 + C) * (n - 2 + 1/C). Example: a(5) = 46 = (5 + 3.732...)*(5 + 0.267...). - Gary W. Adamson, Jul 29 2009
a(n), n >= 0, with a(0) = -3 and a(1) = -2, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 12 for b = 2*n. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
If A(n) is a 3 X 3 Khovanski matrix having 1 below the main diagonal, n on the main diagonal, and n^3 above the main diagonal, then (Det(A(n)) - 2*n^3) / n^4 = a(n). - Gary Detlefs, Nov 12 2013
Imagine a large square containing four smaller square "holes" of equal size: Let x = large square side and y = smaller square side; considering instances where the area of this shape [x^2 - 4*y^2] equals the length of its perimeter, [4*(x + 4*y)]. When y is an integer n, the above equation is satisfied by x = 2 + 2*sqrt(a(n)). - Peter M. Chema, Apr 10 2016
a(n+1) is the number of distinct linear partitions of 2 X n grid points. A linear partition is a way to partition given points by a line into two nonempty subsets. Details can be found in Pan's link. - Ran Pan, Jun 06 2016
Numbers represented as 141 in number base B: 141(5) = 46, 141(6) = 61 and, if 'digits' larger than (B-1) are allowed, 141(2) = 13, 141(3) = 22, 141(4) = 33. - Ron Knott, Nov 14 2017

Crossrefs

Essentially the same: A123968, A267874.

Programs

Formula

From R. J. Mathar, Apr 28 2008: (Start)
O.g.f.: x^2*(1 + 3*x - 2*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n+1) = floor((n^4 + 2*n^3)/(n^2 + 1)). - Gary Detlefs, Feb 20 2010, corrected by Charles R Greathouse IV, Mar 18 2022
a(n) = a(n-1) + 2*n-1 (with a(2)=1). - Vincenzo Librandi, Nov 18 2010
a(n)*a(n-1) + 3 = (a(n) - n)^2 = A014209(n-2)^2. - Bruno Berselli, Dec 07 2011
a(n) = A000290(n) - 3. - Michel Marcus, Nov 13 2013
Sum_{n>=2} 1/a(n) = 2/3 - Pi*cot(sqrt(3)*Pi)/(2*sqrt(3)) = 1.476650189986093617... . - Vaclav Kotesovec, Apr 10 2016
E.g.f.: (x^2 + x - 3)*exp(x) + 2*x + 3. - G. C. Greubel, Jul 19 2017
Sum_{n>=2} (-1)^n/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/6 = 0.8826191087... - Amiram Eldar, Nov 04 2020
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=2} (1 + 1/a(n)) = sqrt(6)*csc(sqrt(3)*Pi)*sin(sqrt(2)*Pi).
Product_{n>=3} (1 - 1/a(n)) = -Pi*csc(sqrt(3)*Pi)/(4*sqrt(3)). (End)

A114949 a(n) = n^2 + 6.

Original entry on oeis.org

6, 7, 10, 15, 22, 31, 42, 55, 70, 87, 106, 127, 150, 175, 202, 231, 262, 295, 330, 367, 406, 447, 490, 535, 582, 631, 682, 735, 790, 847, 906, 967, 1030, 1095, 1162, 1231, 1302, 1375, 1450, 1527, 1606, 1687, 1770, 1855, 1942, 2031, 2122, 2215, 2310, 2407, 2506
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

2/a(n) = R(n)/r, n >= 0, with R(n) the n-th radius of the counterclockwise Pappus chain of the arbelos with semicircle radii r, r1 = 2r/3, r2 = r - r1 = r/3. See the MathWorld link for such a Pappus chain. The clockwise chain companion has circle radii R'(n)/r = 2/A222465(n), n >= 0. - Wolfdieter Lang, Mar 01 2013

Examples

			The arbelos chain defined in a comment above has circle radii [1/3, 2/7, 1/5, 2/15, 1/11, 2/31, 1/21, 2/55, 1/35, 2/87, 1/53,...], for n >= 0. - _Wolfdieter Lang_, Mar 01 2013
		

Crossrefs

Programs

Formula

From R. J. Mathar, May 17 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -(6 - 11*x + 7*x^2)/(x - 1)^3. (End)
a(n) = 2*n + a(n - 1) - 1, with n > 0, a(0)=6. - Vincenzo Librandi, Nov 13 2010
a(n) = A000290(n) + 6. - Omar E. Pol, Mar 02 2013
a(n) = ((n-2)^3 + (n-1)^3 + n^3 + (n+1)^3 + (n+2)^3)/(5*n) for n>=1. - Bruno Berselli, May 12 2014
For n >= 1, a(n) = (A016742(n) + A082044(n) - 1)/A000290(n). - Bruce J. Nicholson, Apr 19 2017
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(6)*Pi*coth(sqrt(6)*Pi))/12.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(6)*Pi*cosech(sqrt(6)*Pi))/12. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(5/6)*sinh(sqrt(5)*Pi)/sinh(sqrt(6)*Pi).
Product_{n>=0} (1 + 1/a(n)) = sqrt(7/6)*sinh(sqrt(7)*Pi)/sinh(sqrt(6)*Pi). (End)
E.g.f.: exp(x)*(6 + x + x^2). - Elmo R. Oliveira, Jan 17 2025

A114962 a(n) = n^2 + 14.

Original entry on oeis.org

14, 15, 18, 23, 30, 39, 50, 63, 78, 95, 114, 135, 158, 183, 210, 239, 270, 303, 338, 375, 414, 455, 498, 543, 590, 639, 690, 743, 798, 855, 914, 975, 1038, 1103, 1170, 1239, 1310, 1383, 1458, 1535, 1614, 1695, 1778, 1863, 1950, 2039, 2130, 2223, 2318, 2415, 2514
Offset: 0

Views

Author

Cino Hilliard, Feb 21 2006

Keywords

Comments

Old name was: "Numbers of the form x^2 + 14".
x^2 + 14 != y^n for all x,y and n > 1.

Crossrefs

Cf. A155136, n^2 - 28; A000290, n^2; A114948, n^2 + 10.
Cf. sequences of the type n^2 + k: A002522 (k=1), A059100 (k=2), A117950 (k=3), A087475 (k=4), A117951 (k=5), A114949 (k=6), A117619 (k=7), A189833 (k=8), A189834 (k=9), A114948 (k=10), A189836 (k=11), A241748 (k=12), A241749 (k=13), this sequence (k=14), A241750 (k=15), A241751 (k=16), A241847 (k=17), A241848 (k=18), A241849 (k=19), A241850 (k=20), A241851 (k=21), A114963 (k=22), A241889 (k=23), A241890 (k=24), A114964 (k=30).

Programs

Formula

G.f.: (14-27*x+15*x^2)/(1-x)^3. - Colin Barker, Jan 11 2012
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(14)*Pi*coth(sqrt(14)*Pi))/28.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(14)*Pi*cosech(sqrt(14)*Pi))/28. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(14 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

Added 14 from Vincenzo Librandi, Apr 30 2014
Definition changed by Bruno Berselli, Mar 13 2015
Offset corrected by Amiram Eldar, Nov 02 2020

A075664 Sum of next n cubes.

Original entry on oeis.org

0, 1, 35, 405, 2584, 11375, 38961, 111475, 278720, 627669, 1300375, 2516921, 4604040, 8030035, 13446629, 21738375, 34080256, 52004105, 77474475, 112974589, 161603000, 227181591, 314375545, 428825915, 577295424, 767828125, 1009923551, 1314725985, 1695229480, 2166499259
Offset: 0

Views

Author

Zak Seidov, Sep 24 2002

Keywords

Examples

			a(1) = 1^3 = 1; a(2) = 2^3 + 3^3 = 35; a(3) = 4^3 + 5^3 + 6^3 = 64 + 125 + 216 = 405.
From _Philippe Deléham_, Mar 09 2014: (Start)
a(1) = 1*2*3/8 = 1;
a(2) = 8*5*7/8 = 35;
a(3) = 27*10*12/8 = 405;
a(4) = 64*17*19/8 = 2584;
a(5) = 125*26*28/8 = 11375; etc. (End)
		

Crossrefs

Cf. A000578 (cubes).
Cf. A006003, A072474 (for squares), A075665 - A075671 (4th to 10th powers), A069876 (n-th powers).

Programs

  • Magma
    [(n^7+4*n^5+3*n^3)/8: n in [1..30]]; // Vincenzo Librandi, Mar 11 2014
    
  • Maple
    A075664:=n->(n^7 + 4n^5 + 3n^3)/8; seq(A075664(n), n=1..30); # Wesley Ivan Hurt, Mar 10 2014
  • Mathematica
    i1 := n(n-1)/2+1; i2 := n(n-1)/2+n; s=3; Table[Sum[i^s, {i, i1, i2}], {n, 20}]
    CoefficientList[Series[(1 + 27 x + 153 x^2 + 268 x^3 + 153 x^4 + 27 x^5 + x^6)/(1 - x)^8, {x, 0, 40}], x](* Vincenzo Librandi, Mar 11 2014 *)
    With[{nn=30},Total/@TakeList[Range[(nn(nn+1))/2]^3,Range[nn]]] (* Requires Mathematica version 11 or later *) (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,35,405,2584,11375,38961,111475,278720},30] (* Harvey P. Dale, Jun 05 2021 *)
  • PARI
    a(n)=(n^7+4*n^5+3*n^3)/8 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Python
    def A075664(n): return n*(m:=n**2)*(m*(m+4)+3)>>3 # Chai Wah Wu, Feb 09 2025

Formula

a(n) = Sum_{i=n(n-1)/2+1..n(n-1)/2+n} i^3. [Corrected by Stefano Spezia, Jun 22 2024]
a(n) = (n^7 + 4n^5 + 3n^3)/8. - Charles R Greathouse IV, Sep 17 2009
G.f.: x*(1+27*x+153*x^2+268*x^3+153*x^4+27*x^5+x^6)/(1-x)^8. - Colin Barker, May 25 2012
a(n) = n^3*(n^2 + 1)*(n^2 + 3)/8 = A000578(n)*A002522(n)*A117950(n)/8. - Philippe Deléham, Mar 09 2014
E.g.f.: exp(x)*x*(8 + 132*x + 404*x^2 + 390*x^3 + 144*x^4 + 21*x^5 + x^6)/8. - Stefano Spezia, Jun 22 2024

Extensions

Formula from Charles R Greathouse IV, Sep 17 2009
More terms from Vincenzo Librandi, Mar 11 2014
a(0) added by Chai Wah Wu, Feb 09 2025

A132111 Triangle read by rows: T(n,k) = n^2 + k*n + k^2, 0 <= k <= n.

Original entry on oeis.org

0, 1, 3, 4, 7, 12, 9, 13, 19, 27, 16, 21, 28, 37, 48, 25, 31, 39, 49, 61, 75, 36, 43, 52, 63, 76, 91, 108, 49, 57, 67, 79, 93, 109, 127, 147, 64, 73, 84, 97, 112, 129, 148, 169, 192, 81, 91, 103, 117, 133, 151, 171, 193, 217, 243, 100, 111, 124, 139, 156, 175, 196, 219
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 10 2007

Keywords

Comments

Permutation of A003136, the Loeschian numbers. [This is false - some terms are repeated, the first being 49. - Joerg Arndt, Dec 18 2015]
Row sums give A132112.
Central terms give A033582.
T(n,k+1) = T(n,k) + n + 2*k + 1;
T(n+1,k) = T(n,k) + 2*n + k + 1;
T(n+1,k+1) = T(n,k) + 3*(n+k+1);
T(n,0) = A000290(n);
T(n,1) = A002061(n+1) for n>0;
T(n,2) = A117950(n+1) for n>1;
T(n,n-2) = A056107(n-1) for n>1;
T(n,n-1) = A003215(n-1) for n>0;
T(n,n) = A033428(n).
T(n,k) is the norm N(alpha) of the integer alpha = n*1 - k*omega, where omega = exp(2*Pi*i/3) = (-1 + i*sqrt(3))/2 in the imaginary quadratic number field Q(sqrt(-3)): N = |alpha|^2 = (n + k/2)^2 + (3/4)*k^2 = n^2 + n*k + k^2 = T(n,k), with n >= 0, and k <= n. See also triangle A073254 for T(n,-k). - Wolfdieter Lang, Jun 13 2021

Examples

			From _Philippe Deléham_, Apr 16 2014: (Start)
Triangle begins:
   0;
   1,  3;
   4,  7,  12;
   9, 13,  19,  27;
  16, 21,  28,  37,  48;
  25, 31,  39,  49,  61,  75;
  36, 43,  52,  63,  76,  91, 108;
  49, 57,  67,  79,  93, 109, 127, 147;
  64, 73,  84,  97, 112, 129, 148, 169, 192;
  81, 91, 103, 117, 133, 151, 171, 193, 217, 243;
  ...
(End)
		

Crossrefs

Cf. A073254.

Programs

  • Mathematica
    Flatten[Table[n^2+k*n+k^2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jun 10 2013 *)

A266470 T(n,k) = number of n X k binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.

Original entry on oeis.org

2, 2, 3, 2, 4, 4, 2, 5, 7, 5, 2, 6, 12, 12, 6, 2, 7, 19, 29, 19, 7, 2, 8, 28, 66, 67, 29, 8, 2, 9, 39, 137, 232, 147, 42, 9, 2, 10, 52, 261, 735, 794, 303, 59, 10, 2, 11, 67, 463, 2090, 4074, 2574, 590, 80, 11, 2, 12, 84, 775, 5371, 18808, 22128, 7797, 1090, 106, 12, 2, 13, 103
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Comments

Table starts
..2...2....2.....2.......2.........2..........2............2.............2
..3...4....5.....6.......7.........8..........9...........10............11
..4...7...12....19......28........39.........52...........67............84
..5..12...29....66.....137.......261........463..........775..........1237
..6..19...67...232.....735......2090.......5371........12645.........27639
..7..29..147...794....4074.....18808......77320.......285494........959672
..8..42..303..2574...22128....175180....1231170......7652503......42460424
..9..59..590..7797..113677...1595005...20115063....223521350....2195862381
.10..80.1090.22058..544142..13720886..319006954...6568208183..119000455681
.11.106.1922.58469.2417707.109830369.4768598707.185724489849.6373048347212

Examples

			Some solutions for n=4 k=4
..0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..1
..0..0..0..1....0..0..1..0....0..0..0..1....0..0..1..1....0..0..1..0
..0..1..1..0....1..1..0..0....1..1..1..0....1..1..0..0....1..1..0..0
..1..0..0..0....1..1..1..0....1..1..1..1....1..1..1..1....1..1..0..0
		

Crossrefs

Column 1 is A000027(n+1).
Row 2 is A000027(n+2).
Row 3 is A117950.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5)
k=3: [order 12]
Empirical for row n:
n=1: a(n) = 2
n=2: a(n) = n + 2
n=3: a(n) = n^2 + 3
n=4: [polynomial of degree 5]
n=5: [polynomial of degree 9]
n=6: [polynomial of degree 19]
n=7: [polynomial of degree 34]

A117619 a(n) = n^2 + 7.

Original entry on oeis.org

7, 8, 11, 16, 23, 32, 43, 56, 71, 88, 107, 128, 151, 176, 203, 232, 263, 296, 331, 368, 407, 448, 491, 536, 583, 632, 683, 736, 791, 848, 907, 968, 1031, 1096, 1163, 1232, 1303, 1376, 1451, 1528, 1607, 1688, 1771, 1856, 1943, 2032, 2123, 2216, 2311, 2408, 2507
Offset: 0

Views

Author

Parthasarathy Nambi, Apr 07 2006

Keywords

Crossrefs

Programs

Formula

G.f.: (-8*x^2 + 13*x - 7)/(x - 1)^3. - Indranil Ghosh, Apr 05 2017
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + sqrt(7)*Pi*coth(sqrt(7)*Pi))/14.
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(7)*Pi*cosech(sqrt(7)*Pi))/14. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = sqrt(6/7)*sinh(sqrt(6)*Pi)/sinh(sqrt(7)*Pi).
Product_{n>=0} (1 + 1/a(n)) = 2*sqrt(2/7)*sinh(2*sqrt(2)*Pi)/sinh(sqrt(7)*Pi). (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
E.g.f.: exp(x)*(7 + x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A189834 a(n) = n^2 + 9.

Original entry on oeis.org

9, 10, 13, 18, 25, 34, 45, 58, 73, 90, 109, 130, 153, 178, 205, 234, 265, 298, 333, 370, 409, 450, 493, 538, 585, 634, 685, 738, 793, 850, 909, 970, 1033, 1098, 1165, 1234, 1305, 1378, 1453, 1530, 1609, 1690, 1773, 1858, 1945
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A154533(n+1). - R. J. Mathar, May 16 2011
G.f.: ( -9+17*x-10*x^2 ) / (x-1)^3 . - R. J. Mathar, Aug 31 2011
E.g.f.: (9 + x + x^2)*exp(x). - G. C. Greubel, Jan 13 2018
From Amiram Eldar, Nov 02 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + 3*Pi*coth(3*Pi))/18.
Sum_{n>=0} (-1)^n/a(n) = (1 + 3*Pi*cosech(3*Pi))/18. (End)
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=0} (1 - 1/a(n)) = (2/3)*sqrt(2)*sinh(2*sqrt(2)*Pi)/sinh(3*Pi).
Product_{n>=0} (1 + 1/a(n)) = (sqrt(10)/3)*sinh(sqrt(10)*Pi)/sinh(3*Pi). (End)
Showing 1-10 of 33 results. Next