cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A058962 a(n) = 2^(2*n)*(2*n+1).

Original entry on oeis.org

1, 12, 80, 448, 2304, 11264, 53248, 245760, 1114112, 4980736, 22020096, 96468992, 419430400, 1811939328, 7784628224, 33285996544, 141733920768, 601295421440, 2542620639232, 10720238370816, 45079976738816, 189115999977472, 791648371998720
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2001

Keywords

Comments

Denominators in expansion of -1/2*i*Pi+i*arcsin((1+1/4*x^2)/(1-1/4*x^2)), where i=sqrt(-1); numerators are all 1.
Bisection of A001787. That is, a(n) = A001787(2n+1). - Graeme McRae, Jul 12 2006
Denominators of odd terms in expansion of 2*arctanh(s/2); numerators are all 1. - Gerry Martens, Jul 26 2015
Reciprocals of coefficients of Taylor series expansion of sinh(x/2) / (x/2). - Tom Copeland, Feb 03 2016

Crossrefs

Cf. A154920. - Jaume Oliver Lafont, Jan 29 2009
Factor of the LS1[-2,n] matrix coefficients in A160487. - Johannes W. Meijer, May 24 2009

Programs

  • Magma
    [2^(2*n)*(2*n+1) : n in [0..30]]; // Wesley Ivan Hurt, Aug 07 2015
    
  • Mathematica
    a[n_] := 1/SeriesCoefficient[2 ArcTanh[s/2],{s,0,n}]
    Table[a[n], {n, 1, 40, 2}] (* Gerry Martens, Jul 26 2015 *)
    Table[2^(2 n) (2 n + 1), {n, 0, 40}] (* Vincenzo Librandi, Aug 08 2015 *)
    a[ n_] := With[{m = 2 n + 2}, If[ n < 0, -a[-1 - n] 4^(m - 1), m! SeriesCoefficient[ x^2 D[x Sinc[I x]^2, x]/2, {x, 0, m}]]]; (* Michael Somos, Jun 18 2017 *)
  • PARI
    A058962(n)=2^(2*n)*(2*n+1) \\ M. F. Hasler, Aug 11 2015
    
  • PARI
    {a(n) = my(m = 2*n + 2); if( n<0, -a(-1 - n) * 4^(m - 1), m! * polcoeff( x^2 * deriv(x * sinc(I*x + x * O(x^m))^2, x) / 2, m))}; /* Michael Somos, Jun 18 2017 */

Formula

Central terms of the triangle in A118416: a(n) = A118416(2*n+1, n+1) - Reinhard Zumkeller, Apr 27 2006
Sum_{n>=0} 1/a(n) = log(3). - Jaume Oliver Lafont, May 22 2007; corrected by Jaume Oliver Lafont, Jan 26 2009
a(n) = 4((2n+1)/(2n-1))*a(n-1) = 4*a(n-1)+2^(2n+1) = 8*a(n-1)-16*a(n-2). - Jaume Oliver Lafont, Dec 09 2008
G.f.: (1+4*x)/(1-4*x)^2. - Jaume Oliver Lafont, Jan 29 2009
E.g.f.: exp(4*x)*(1+8*x). - Robert Israel, Aug 10 2015
a(n) = -a(-1-n) * 4^(2*n+1) for all n in Z. - Michael Somos, Jun 18 2017
a(n) = Sum_{k = 0..n} (2*k + 1)^2*binomial(2*n + 1, n - k). - Peter Bala, Feb 25 2019
Sum_{n>=0} (-1)^n/a(n) = 2 * arctan(1/2) = 2 * A073000. - Amiram Eldar, Jul 03 2020

A118413 Triangle read by rows: T(n,k) = (2*n-1)*2^(k-1), 0

Original entry on oeis.org

1, 3, 6, 5, 10, 20, 7, 14, 28, 56, 9, 18, 36, 72, 144, 11, 22, 44, 88, 176, 352, 13, 26, 52, 104, 208, 416, 832, 15, 30, 60, 120, 240, 480, 960, 1920, 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 21, 42, 84, 168
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Central terms give A118415; row sums give A118414;
T(n,1) = A005408(n-1);
T(n,2) = A016825(n-1) for n>1;
T(n,3) = A017113(n-1) for n>2;
T(n,4) = A051062(n-1) for n>3;
T(n,n-2) = A052951(n-1) for n>2;
T(n,n) = A014480(n-1) = A118416(n,n);
A001511(T(n,k)) = A002260(n,k);
A003602(T(n,k)) = A002024(n,k).
G.f.: x*y*(1 + x + 2*x*y - 6*x^2*y)/((1 - x)^2*(1 - 2*x*y)^2). - Stefano Spezia, Dec 22 2024

Examples

			   1
   3   6
   5  10  20
   7  14  28  56
   9  18  36  72 144
  11  22  44  88 176 352
  13  26  52 104 208 416  832
  15  30  60 120 240 480  960 1920
  17  34  68 136 272 544 1088 2176 4352
  19  38  76 152 304 608 1216 2432 4864 9728
  ...
		

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[(2n-1)2^(k-1),{n,20},{k,0,n}]],IntegerQ] (* Harvey P. Dale, Jan 17 2024 *)
  • Python
    from math import isqrt, comb
    def A118413(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        return ((a<<1)-1)<Chai Wah Wu, Jun 20 2025

A118416 Triangle read by rows: T(n,k) = (2*k-1)*2^(n-1), 0 < k <= n.

Original entry on oeis.org

1, 2, 6, 4, 12, 20, 8, 24, 40, 56, 16, 48, 80, 112, 144, 32, 96, 160, 224, 288, 352, 64, 192, 320, 448, 576, 704, 832, 128, 384, 640, 896, 1152, 1408, 1664, 1920, 256, 768, 1280, 1792, 2304, 2816, 3328, 3840, 4352, 512, 1536, 2560, 3584, 4608, 5632, 6656, 7680
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 27 2006

Keywords

Comments

Row sums give A014477: Sum_{k=1..n} T(n,k) = A014477(n-1);
central terms give A118415; T(2*k-1,k) = A058962(k-1);
T(n,1) = A000079(n-1);
T(n,2) = A007283(n-1) for n > 1;
T(n,3) = A020714(n-1) for n > 2;
T(n,4) = A005009(n-1) for n > 3;
T(n,5) = A005010(n-1) for n > 4;
T(n,n-1) = A118417(n-1) for n > 1;
T(n,n) = A014480(n-1) = A118413(n,n);
A001511(T(n,k)) = A002024(n,k);
A003602(T(n,k)) = A002260(n,k).
The alternating row sums, Sum_{k=1..n} (-1)^(k+1)*T(n,k), are: (a) in odd rows, the central term, T(n,(n+1)/2) = A058962((n-1)/2); (b) in even rows, the negation of the average of the two central terms, -(T(2n,n) + T(2n,+1))/2 = -A018215(m/2). The absolute values of the alternating row sums give the plain row means, Sum_{k=1..n} T(n,k)/n; the alternating sign row means are (-2)^(n-1). - Gregory Gerard Wojnar, Feb 10 2024

Examples

			Triangle begins:
   1;
   2,   6;
   4,  12,  20;
   8,  24,  40,  56;
  16,  48,  80, 112, 144;
  32,  96, 160, 224, 288, 352;
  64, 192, 320, 448, 576, 704, 832;
		

Crossrefs

Programs

  • Haskell
    a118416 n k = a118416_tabl !! (n-1) !! (k-1)
    a118416_row 1 = [1]
    a118416_row n = (map (* 2) $ a118416_row (n-1)) ++ [a014480 (n-1)]
    a118416_tabl = map a118416_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
    
  • Maple
    A118416 := proc(n,k) 2^(n-1)*(2*k-1) ; end proc: # R. J. Mathar, Sep 04 2011
  • Mathematica
    Flatten[Table[(2k-1)2^(n-1),{n,10},{k,n}]] (* Harvey P. Dale, Aug 26 2014 *)
  • Python
    from math import isqrt
    def A118416(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(1-a)+(n<<1)-1<Chai Wah Wu, Jun 20 2025

Formula

T(n,k) = 2*T(n-1,k), 1 <= k < n; T(n,n) = A014480(n-1).
Showing 1-3 of 3 results.